示例#1
0
 def test_sortino_translation_same(self, returns, required_return,
                                   translation):
     sr = empyrical.sortino_ratio(returns, required_return)
     sr_depressed = empyrical.sortino_ratio(returns - translation,
                                            required_return - translation)
     sr_raised = empyrical.sortino_ratio(returns + translation,
                                         required_return + translation)
     assert_almost_equal(sr, sr_depressed, DECIMAL_PLACES)
     assert_almost_equal(sr, sr_raised, DECIMAL_PLACES)
示例#2
0
 def test_sortino_ratio(self, test_required_return):
     res_a = empyrical.sortino_ratio(ret['a'], required_return=test_required_return)
     res_b = empyrical.sortino_ratio(ret['b'], required_return=test_required_return)
     res_c = empyrical.sortino_ratio(ret['c'], required_return=test_required_return)
     assert isclose(ret['a'].vbt.returns.sortino_ratio(required_return=test_required_return), res_a)
     pd.testing.assert_series_equal(
         ret.vbt.returns.sortino_ratio(required_return=test_required_return),
         pd.Series([res_a, res_b, res_c], index=ret.columns).rename('sortino_ratio')
     )
示例#3
0
 def test_sortino_sub_noise(self, returns, required_return):
     sr_1 = empyrical.sortino_ratio(returns, required_return)
     downside_values = returns[returns < required_return].index.tolist()
     # Replace some values below the required return to the required return
     loss_loc = random.sample(downside_values, 2)
     returns[loss_loc[0]] = required_return
     sr_2 = empyrical.sortino_ratio(returns, required_return)
     returns[loss_loc[1]] = required_return
     sr_3 = empyrical.sortino_ratio(returns, required_return)
     assert sr_1 <= sr_2
     assert sr_2 <= sr_3
示例#4
0
 def test_sortino_add_noise(self, returns, required_return):
     sr_1 = empyrical.sortino_ratio(returns, required_return)
     upside_values = returns[returns > required_return].index.tolist()
     # Add large losses at random upside locations
     loss_loc = random.sample(upside_values, 2)
     returns[loss_loc[0]] = -0.01
     sr_2 = empyrical.sortino_ratio(returns, required_return)
     returns[loss_loc[1]] = -0.01
     sr_3 = empyrical.sortino_ratio(returns, required_return)
     assert sr_1 > sr_2
     assert sr_2 > sr_3
示例#5
0
 def test_sortino_translation_diff(self, returns, required_return,
                                   translation_returns,
                                   translation_required):
     sr = empyrical.sortino_ratio(returns, required_return)
     sr_depressed = empyrical.sortino_ratio(
         returns - translation_returns,
         required_return - translation_required)
     sr_raised = empyrical.sortino_ratio(
         returns + translation_returns,
         required_return + translation_required)
     assert sr != sr_depressed
     assert sr != sr_raised
    def evaluation(self):
        ap.sound(f'entry: create_df')

        mdd = empyrical.max_drawdown(self.df.eac_stgy_rt)
        stgy_ret_an = empyrical.annual_return(self.df.eac_stgy_rt, annualization=self.cls.annualization)
        bcmk_ret_an = empyrical.annual_return(self.df.eac_bcmk_rt, annualization=self.cls.annualization)
        stgy_vlt_an = empyrical.annual_volatility(self.df.eac_stgy_rt, annualization=self.cls.annualization)
        bcmk_vlt_an = empyrical.annual_volatility(self.df.eac_bcmk_rt, annualization=self.cls.annualization)
        calmar = empyrical.calmar_ratio(self.df.eac_stgy_rt, annualization=self.cls.annualization)
        omega = empyrical.omega_ratio(self.df.eac_stgy_rt, risk_free=self.cls.rf, annualization=self.cls.annualization)
        sharpe = qp.sharpe_ratio(stgy_ret_an, self.df.cum_stgy_rt, self.cls.rf)
        sortino = empyrical.sortino_ratio(self.df.eac_stgy_rt, annualization=self.cls.annualization)
        dsrk = empyrical.downside_risk(self.df.eac_stgy_rt, annualization=self.cls.annualization)
        information = empyrical.information_ratio(self.df.eac_stgy_rt, factor_returns=self.df.eac_bcmk_rt)
        beta = empyrical.beta(self.df.eac_stgy_rt, factor_returns=self.df.eac_bcmk_rt, risk_free=self.cls.rf)
        tail_rt = empyrical.tail_ratio(self.df.eac_stgy_rt)
        alpha = qp.alpha_ratio(stgy_ret_an, bcmk_ret_an, self.cls.rf, beta)

        stgy_ttrt_rt = (self.cls.yd.ttas[-1] - self.cls.yd.ttas[0]) / self.cls.yd.ttas[0]
        bcmk_ttrt_rt = (self.cls.pc.close[-1] - self.cls.pc.close[0]) / self.cls.pc.close[0]
        car_rt = stgy_ttrt_rt - bcmk_ttrt_rt
        car_rt_an = stgy_ret_an - bcmk_ret_an

        self.cls.df_output = pd.DataFrame(
            {'sgty_ttrt_rt': [stgy_ttrt_rt], 'bcmk_ttrt_rt': [bcmk_ttrt_rt], 'car_rt': [car_rt],
             'stgy_ret_an': [stgy_ret_an], 'bcmk_ret_an': [bcmk_ret_an], 'car_rt_an': [car_rt_an],
             'stgy_vlt_an': [stgy_vlt_an], 'bcmk_vlt_an': [bcmk_vlt_an], 'mdd': [mdd],
             'sharpe': [sharpe], 'alpha': [alpha], 'beta': [beta], 'information': [information],
             'tail_rt': [tail_rt], 'calmar': [calmar], 'omega': [omega], 'sortino': [sortino], 'dsrk': [dsrk]})
        print(f'feedback: \n{self.cls.df_output.T}')
示例#7
0
 def step_act(self, action):
     if action == 1:
         self.buy(size=.1)
         for i in self.trades:
             if i.is_short:
                 i.close()
     elif action == 2:
         self.sell(size=.1)
         for i in self.trades:
             if i.is_long:
                 i.close()
     self.account_history.append(self.equity)
     length = min(self.step, self.reward_length)
     ret = np.diff(self.account_history)[-length:]
     r = sortino_ratio(ret)
     if abs(r) != np.inf and not np.isnan(r):
         reward = r
     else:
         reward = 0
     if self.step > 5:
         if self.last_action[-1] == self.last_action[-2] and reward < 0:
             reward -= 5
     done = False
     if reward > 10:
         done = True
     c = self.data.index[-1]
     new_state = get_state(c + 1)
     return new_state, reward, done
示例#8
0
    def calculate_metrics(self):
        self.benchmark_period_returns = \
            cum_returns(self.benchmark_returns).iloc[-1]

        self.algorithm_period_returns = \
            cum_returns(self.algorithm_returns).iloc[-1]

        if not self.algorithm_returns.index.equals(
                self.benchmark_returns.index):
            message = "Mismatch between benchmark_returns ({bm_count}) and \
            algorithm_returns ({algo_count}) in range {start} : {end}"

            message = message.format(bm_count=len(self.benchmark_returns),
                                     algo_count=len(self.algorithm_returns),
                                     start=self._start_session,
                                     end=self._end_session)
            raise Exception(message)

        self.num_trading_days = len(self.benchmark_returns)

        self.mean_algorithm_returns = (
            self.algorithm_returns.cumsum() /
            np.arange(1, self.num_trading_days + 1, dtype=np.float64))

        self.benchmark_volatility = annual_volatility(self.benchmark_returns)
        self.algorithm_volatility = annual_volatility(self.algorithm_returns)

        self.treasury_period_return = choose_treasury(
            self.treasury_curves,
            self._start_session,
            self._end_session,
            self.trading_calendar,
        )
        self.sharpe = sharpe_ratio(self.algorithm_returns, )
        # The consumer currently expects a 0.0 value for sharpe in period,
        # this differs from cumulative which was np.nan.
        # When factoring out the sharpe_ratio, the different return types
        # were collapsed into `np.nan`.
        # TODO: Either fix consumer to accept `np.nan` or make the
        # `sharpe_ratio` return type configurable.
        # In the meantime, convert nan values to 0.0
        if pd.isnull(self.sharpe):
            self.sharpe = 0.0
        self.downside_risk = downside_risk(self.algorithm_returns.values)
        self.sortino = sortino_ratio(
            self.algorithm_returns.values,
            _downside_risk=self.downside_risk,
        )
        self.information = information_ratio(
            self.algorithm_returns.values,
            self.benchmark_returns.values,
        )
        self.alpha, self.beta = alpha_beta_aligned(
            self.algorithm_returns.values,
            self.benchmark_returns.values,
        )
        self.excess_return = self.algorithm_period_returns - \
            self.treasury_period_return
        self.max_drawdown = max_drawdown(self.algorithm_returns.values)
        self.max_leverage = self.calculate_max_leverage()
示例#9
0
def sortino_ratio(returns, required_return=0, period=DAILY):
    """
    Determines the Sortino ratio of a strategy.

    Parameters
    ----------
    returns : pd.Series or pd.DataFrame
        Daily returns of the strategy, noncumulative.
        - See full explanation in :func:`~pyfolio.timeseries.cum_returns`.
    required_return: float / series
        minimum acceptable return
    period : str, optional
        Defines the periodicity of the 'returns' data for purposes of
        annualizing. Can be 'monthly', 'weekly', or 'daily'.
        - Defaults to 'daily'.

    Returns
    -------
    depends on input type
    series ==> float
    DataFrame ==> np.array

        Annualized Sortino ratio.
    """

    return ep.sortino_ratio(returns, required_return=required_return)
示例#10
0
 def getSortinoRatio(returns,
                     required_return=0,
                     period='daily',
                     annualization=None,
                     _downside_risk=None):
     return empyrical.sortino_ratio(returns, required_return, period,
                                    annualization, _downside_risk)
示例#11
0
文件: tsmom.py 项目: bigdig/TSMOM
def get_perf_att(series, bnchmark, rf=0.03 / 12, freq='monthly'):
    """F: that provides performance statistic of the returns
    params
    -------

        series: daily or monthly returns

    returns:
        dataframe of Strategy name and statistics"""
    port_mean, port_std, port_sr = (get_stats(series, dtime=freq))
    perf = pd.Series(
        {
            'Annualized_Mean':
            '{:,.2f}'.format(round(port_mean, 3)),
            'Annualized_Volatility':
            round(port_std, 3),
            'Sharpe Ratio':
            round(port_sr, 3),
            'Calmar Ratio':
            round(empyrical.calmar_ratio(series, period=freq), 3),
            'Alpha':
            round(empyrical.alpha(series, bnchmark, risk_free=rf, period=freq),
                  3),
            'Beta':
            round(empyrical.beta(series, bnchmark), 3),
            'Max Drawdown':
            '{:,.2%}'.format(drawdown(series, ret_='nottext')),
            'Sortino Ratio':
            round(
                empyrical.sortino_ratio(
                    series, required_return=rf, period=freq), 3),
        }, )
    perf.name = series.name
    return perf.to_frame()
示例#12
0
def small_metrics():
    return {
        Returns(),
        ReturnsStatistic(
            lambda returns: empyrical.sortino_ratio(returns, period='monthly'),
            'sortino monthly'),
    }
示例#13
0
    def _get_reward(self) -> float:
        """
        This method computes the reward from each action, by looking at the annualized
        ratio, provided in the reward_function
        :return: annualized value of the selected reward ratio
        """
        lookback = min(self.current_step, self._returns_lookback)
        returns = np.diff(self.portfolio[-lookback:])

        if np.count_nonzero(returns) < 1:
            return 0

        if np.count_nonzero(returns) < 1:
            return 0

        if self._reward_function == 'sortino':
            reward = sortino_ratio(returns, annualization=365 * 24)
        elif self._reward_function == 'calmar':
            reward = calmar_ratio(returns, annualization=365 * 24)
        elif self._reward_function == 'omega':
            reward = omega_ratio(returns, annualization=365 * 24)
        else:
            reward = returns[-1]

        return reward if np.isfinite(reward) else 0
示例#14
0
def sortino_ratio(returns, required_return=0, period=DAILY):
    """
    Determines the Sortino ratio of a strategy.

    Parameters
    ----------
    returns : pd.Series or pd.DataFrame
        Daily returns of the strategy, noncumulative.
        - See full explanation in :func:`~pyfolio.timeseries.cum_returns`.
    required_return: float / series
        minimum acceptable return
    period : str, optional
        Defines the periodicity of the 'returns' data for purposes of
        annualizing. Can be 'monthly', 'weekly', or 'daily'.
        - Defaults to 'daily'.

    Returns
    -------
    depends on input type
    series ==> float
    DataFrame ==> np.array

        Annualized Sortino ratio.
    """

    return empyrical.sortino_ratio(returns, required_return=required_return)
示例#15
0
 def get_sortino_ratio(self, data):
     data = copy.deepcopy(data)
     sortino_ratio = empyrical.sortino_ratio(data.rets.dropna(),
                                             required_return=self.rft_ret /
                                             self.q,
                                             period='weekly')
     return sortino_ratio
示例#16
0
def get_performance_summary(returns):
    stats = {'annualized_returns': ep.annual_return(returns),
             'cumulative_returns': ep.cum_returns_final(returns),
             'annual_volatility': ep.annual_volatility(returns),
             'sharpe_ratio': ep.sharpe_ratio(returns),
             'sortino_ratio': ep.sortino_ratio(returns),
             'max_drawdown': ep.max_drawdown(returns)}
    return pd.Series(stats)
示例#17
0
 def test_sortino(self, returns, required_return, period, expected):
     sortino_ratio = empyrical.sortino_ratio(
         returns, required_return=required_return, period=period)
     if isinstance(sortino_ratio, float):
         assert_almost_equal(sortino_ratio, expected, DECIMAL_PLACES)
     else:
         for i in range(sortino_ratio.size):
             assert_almost_equal(sortino_ratio[i], expected[i],
                                 DECIMAL_PLACES)
示例#18
0
    def plot(self):
        # show a plot of portfolio vs mean market performance
        df_info = pd.DataFrame(self.infos)
        df_info.set_index('current step', inplace=True)
        #   df_info.set_index('date', inplace=True)
        rn = np.asarray(df_info['portfolio return'])

        try:
            spf = df_info['portfolio value'].iloc[1]  #   Start portfolio value
            epf = df_info['portfolio value'].iloc[-1]  #   End portfolio value
            pr = (epf - spf) / spf
        except:
            pr = 0

        try:
            sr = sharpe_ratio(rn)
        except:
            sr = 0

        try:
            sor = sortino_ratio(rn)
        except:
            sor = 0

        try:
            mdd = max_drawdown(rn)
        except:
            mdd = 0

        try:
            cr = calmar_ratio(rn)
        except:
            cr = 0

        try:
            om = omega_ratio(rn)
        except:
            om = 0

        try:
            dr = downside_risk(rn)
        except:
            dr = 0

        print("First portfolio value: ",
              np.round(df_info['portfolio value'].iloc[1]))
        print("Last portfolio value: ",
              np.round(df_info['portfolio value'].iloc[-1]))

        title = self.strategy_name + ': ' + 'profit={: 2.2%} sharpe={: 2.2f} sortino={: 2.2f} max drawdown={: 2.2%} calmar={: 2.2f} omega={: 2.2f} downside risk={: 2.2f}'.format(
            pr, sr, sor, mdd, cr, om, dr)
        #   df_info[['market value', 'portfolio value']].plot(title=title, fig=plt.gcf(), figsize=(15,10), rot=30)
        df_info[['portfolio value']].plot(title=title,
                                          fig=plt.gcf(),
                                          figsize=(15, 10),
                                          rot=30)
示例#19
0
    def _get_reward(self, current_prices, next_prices):
        if self.compute_reward == compute_reward.profit:
            returns_rate = next_prices / current_prices
            #   pip_value = self._calculate_pip_value_in_account_currency(account_currency.USD, next_prices)
            #   returns_rate = np.multiply(returns_rate, pip_value)
            log_returns = np.log(returns_rate)
            last_weight = self.current_weights
            securities_value = self.current_portfolio_values[:-1] * returns_rate
            self.current_portfolio_values[:-1] = securities_value
            self.current_weights = self.current_portfolio_values / np.sum(
                self.current_portfolio_values)
            reward = last_weight[:-1] * log_returns
        elif self.compute_reward == compute_reward.sharpe:
            try:
                sr = sharpe_ratio(np.asarray(self.returns))
            except:
                sr = 0
            reward = sr
        elif self.compute_reward == compute_reward.sortino:
            try:
                sr = sortino_ratio(np.asarray(self.returns))
            except:
                sr = 0
            reward = sr
        elif self.compute_reward == compute_reward.max_drawdown:
            try:
                mdd = max_drawdown(np.asarray(self.returns))
            except:
                mdd = 0
            reward = mdd
        elif self.compute_reward == compute_reward.calmar:
            try:
                cr = calmar_ratio(np.asarray(self.returns))
            except:
                cr = 0
            reward = cr
        elif self.compute_reward == compute_reward.omega:
            try:
                om = omega_ratio(np.asarray(self.returns))
            except:
                om = 0
            reward = om
        elif self.compute_reward == compute_reward.downside_risk:
            try:
                dr = downside_risk(np.asarray(self.returns))
            except:
                dr = 0
            reward = dr

        try:
            reward = reward.mean()
        except:
            reward = reward

        return reward
示例#20
0
def RiskRewardStats(df):
    global RiskRewardList
    RiskRewardIndex = ['Sharpe Ratio','Sortino Ratio','Omega Ratio','Skewness','Kurtosis',
                      'Correlation vs MSCI World TR Index','Correlation vs Bloomberg Index']
    OmegaRatio = omega_ratio(df['Monthly Return'])
    Kurtosis = df['Monthly Return'].kurt()
    Skewness = df['Monthly Return'].skew()
    SharpeRatio = sharpe_ratio(df['Monthly Return'],period='monthly')
    SortinoRatio = sortino_ratio(df['Monthly Return'],period='monthly')
    RiskRewardList = [SharpeRatio,SortinoRatio,OmegaRatio,Skewness,Kurtosis,MSCIIndex,BloombergIndex]
    RiskRewardDf = pd.DataFrame(RiskRewardList,columns=['Value'],index=RiskRewardIndex)
    return RiskRewardDf
 def sortino_ratio_calc(self, net_worths):
     #Sortino Ratio
     if net_worths:
         length = len(net_worths)
         if length < 100:
             returns = np.diff(net_worths)[-length:] 
         else:
             returns = np.diff(net_worths)[-100:]
         s_r =  sortino_ratio(returns = returns) 
         return s_r
     else:
         return 0
示例#22
0
def _reward(self):
      length = min(self.current_step, self.reward_len)
      returns = np.diff(self.net_worths)[-length:]

      if self.reward_func == 'sortino':
          reward = sortino_ratio(returns)
      elif self.reward_func == 'calmar':
          reward = calmar_ratio(returns)
      elif self.reward_func == 'omega':
          reward = omega_ratio(returns)
      else
          reward = np.mean(returns)

      return reward if abs(reward) != inf and not np.isnan(reward) else 0
示例#23
0
文件: tsmom.py 项目: ssh352/TSMOM
def get_perf_att(series, bnchmark, rf=0.03 / 12, freq='monthly'):
    """F: that provides performance statistic of the returns
    params
    -------

        series: daily or monthly returns

    returns:
        dataframe of Strategy name and statistics"""
    port_mean, port_std, port_sr = (get_stats(series, dtime=freq))

    regs = sm.OLS(series, sm.add_constant(bnchmark)).fit()
    alpha, beta = regs.params
    t_alpha, t_beta = regs.tvalues

    perf = pd.Series(
        {
            'Annualized_Mean':
            '{:,.5f}'.format(round(port_mean, 5)),
            'Annualized_Volatility':
            round(port_std, 5),
            'Sharpe Ratio':
            round(port_sr, 3),
            'Calmar Ratio':
            round(empyrical.calmar_ratio(series, period=freq), 3),
            # 'Alpha' : round(empyrical.alpha(series,
            #                                 bnchmark,
            #                                 risk_free = rf,
            #                                 period = freq),
            'Alpha':
            round(alpha, 3),
            # 'Beta':  round(empyrical.beta(series,
            #                               bnchmark),
            'Beta':
            round(beta, 3),
            'T Value (Alpha)':
            round(t_alpha, 3),
            'T Value (Beta)':
            round(t_beta, 3),
            'Max Drawdown':
            '{:,.2%}'.format(drawdown(series, ret_='nottext')),
            'Sortino Ratio':
            round(
                empyrical.sortino_ratio(
                    series, required_return=rf, period=freq), 3),
        }, )
    perf.name = series.name
    return perf.to_frame()
示例#24
0
    def _reward(self):
        length = min(self.current_step, self.forecast_len)
        returns = np.diff(self.net_worths[-length:])

        if np.count_nonzero(returns) < 1:
            return 0

        if self.reward_func == 'sortino':
            reward = sortino_ratio(returns, annualization=365 * 24)
        elif self.reward_func == 'calmar':
            reward = calmar_ratio(returns, annualization=365 * 24)
        elif self.reward_func == 'omega':
            reward = omega_ratio(returns, annualization=365 * 24)
        else:
            reward = returns[-1]

        return reward if np.isfinite(reward) else 0
    def _reward(self):
        length = min(self.current_step, self.window_size)
        returns = np.diff(self.net_worths[-length:])

        if np.count_nonzero(returns) < 1:
            return 0

        if self.reward_func == 'sortino':
            reward = sortino_ratio(returns, annualization=self.annualization)
        elif self.reward_func == 'calmar':
            reward = calmar_ratio(returns, annualization=self.annualization)
        elif self.reward_func == 'omega':
            reward = omega_ratio(returns, annualization=self.annualization)
        elif self.reward_func == "logret":
            reward = np.log(returns[-1])
        else:
            reward = returns[-1]

        return reward if np.isfinite(reward) else 0
示例#26
0
def sortino_ratio(daily_returns,
                  required_return=0,
                  period='daily',
                  annualization=None,
                  out=None,
                  _downside_risk=None):
    """Sortino Ratio"""
    try:
        logger.info("Calculating Sortino Ratio...")
        sr_data = empyrical.sortino_ratio(daily_returns,
                                          required_return,
                                          period=period,
                                          annualization=annualization,
                                          out=out,
                                          _downside_risk=_downside_risk)
        return sr_data
    except Exception as exception:
        logger.error('Oops! An Error Occurred ⚠️')
        raise exception
示例#27
0
    def _reward(self):

        # print("current step: " +str(self.current_step))
        returns = np.diff(self.net_worths)

        if np.count_nonzero(returns) < 1:
            return 0

        if self.reward_func == 'sortino':
            reward = sortino_ratio(returns, annualization=self.annualization)
        else:
            reward = returns[-1]

        #  # Add decay incentive against
        # # stat hold position
        # hold_decay = 0
        # margin_dist = 0
        # if self.consec_steps > 60:
        #     hold_decay = self.consec_steps * self.decay
        #     # print("hold_decay: " +str(hold_decay))
        #         # print(hold_decay)
        #     # else:
        #     #     hold_decay = self.consec_steps * self.decay
        #     # hold_decay = 0

        #     # margin_dist = -(self.margin_ratio - self.maint_margin_ratio)

        #     # print("margin_frac: " +str(margin_dist))

        #     # print(margin_frac)
        #     # print("-" *90)
        #     # print("equity before: " +str(equity))
        #     # equity = equity - (margin_frac+hold_decay)
        #     # print("equity after: " +str(equity))

        # reward = reward - (hold_decay + margin_dist)

        return reward if np.isfinite(reward) else 0
示例#28
0
def plot_function(epoch_weights):
    ew = np.concatenate(epoch_weights).reshape(-1, No_Channels)
    comm = np.sum(np.abs(ew[1:] - ew[:-1]), axis=1)
    ret = np.sum(np.multiply(ew, y_test.numpy()), axis=1)[1:]
    ind = pd.date_range("20180101", periods=len(ret), freq='H')
    ret = pd.DataFrame(ret - comm * cost, index = ind)
    exp = np.exp(ret.resample('1D').sum()) - 1.0
    ggg = 'Drawdown:', emp.max_drawdown(exp).values[0], 'Sharpe:', emp.sharpe_ratio(exp)[0], \
    'Sortino:', emp.sortino_ratio(exp).values[0], 'Stability:', emp.stability_of_timeseries(exp), \
    'Tail:', emp.tail_ratio(exp), 'ValAtRisk:', emp.value_at_risk(exp)
    ttt = ' '.join(str(x) for x in ggg)
    print(ttt)
    plt.figure()
    np.exp(ret).cumprod().plot(figsize=(48, 12), title=ttt)
    plt.savefig('cumulative_return')
    plt.close()
    ret = ret.resample('1W').sum()
    plt.figure(figsize=(48, 12))
    pal = sns.color_palette("Greens_d", len(ret))
    rank = ret.iloc[:,0].argsort()
    ax = sns.barplot(x=ret.index.strftime('%d-%m'), y=ret.values.reshape(-1), palette=np.array(pal[::-1])[rank])
    ax.text(0.5, 1.0, ttt, horizontalalignment='center', verticalalignment='top', transform=ax.transAxes)
    plt.savefig('weekly_returns')
    plt.close()
    ew_df = pd.DataFrame(ew)
    plt.figure(figsize=(48, 12))
    ax = sns.heatmap(ew_df.T, cmap=cmap, center=0, xticklabels=False, robust=True)
    ax.text(0.5, 1.0, ttt, horizontalalignment='center', verticalalignment='top', transform=ax.transAxes)
    plt.savefig('portfolio_weights')
    plt.close()
    tr = np.diff(ew.T, axis=1)
    plt.figure(figsize=(96, 12))
    ax = sns.heatmap(tr, cmap=cmap, center=0, robust=True, yticklabels=False, xticklabels=False)
    ax.text(0.5, 1.0, ttt, horizontalalignment='center', verticalalignment='top', transform=ax.transAxes)
    plt.savefig('transactions')
    plt.close()
示例#29
0
def get_performance_summary(returns):
    '''
    Calculate selected performance evaluation metrics using provided returns.
    
    Parameters
    ------------
    returns : pd.Series
        Series of returns we want to evaluate

    Returns
    -----------
    stats : pd.Series
        The calculated performance metrics
        
    '''
    stats = {
        'annualized_returns': ep.annual_return(returns),
        'cumulative_returns': ep.cum_returns_final(returns),
        'annual_volatility': ep.annual_volatility(returns),
        'sharpe_ratio': ep.sharpe_ratio(returns),
        'sortino_ratio': ep.sortino_ratio(returns),
        'max_drawdown': ep.max_drawdown(returns)
    }
    return pd.Series(stats)
示例#30
0
文件: period.py 项目: FranSal/zipline
    def calculate_metrics(self):
        self.benchmark_period_returns = \
            cum_returns(self.benchmark_returns).iloc[-1]

        self.algorithm_period_returns = \
            cum_returns(self.algorithm_returns).iloc[-1]

        if not self.algorithm_returns.index.equals(
            self.benchmark_returns.index
        ):
            message = "Mismatch between benchmark_returns ({bm_count}) and \
            algorithm_returns ({algo_count}) in range {start} : {end}"
            message = message.format(
                bm_count=len(self.benchmark_returns),
                algo_count=len(self.algorithm_returns),
                start=self._start_session,
                end=self._end_session
            )
            raise Exception(message)

        self.num_trading_days = len(self.benchmark_returns)

        self.mean_algorithm_returns = (
            self.algorithm_returns.cumsum() /
            np.arange(1, self.num_trading_days + 1, dtype=np.float64)
        )

        self.benchmark_volatility = annual_volatility(self.benchmark_returns)
        self.algorithm_volatility = annual_volatility(self.algorithm_returns)

        self.treasury_period_return = choose_treasury(
            self.treasury_curves,
            self._start_session,
            self._end_session,
            self.trading_calendar,
        )
        self.sharpe = sharpe_ratio(
            self.algorithm_returns,
        )
        # The consumer currently expects a 0.0 value for sharpe in period,
        # this differs from cumulative which was np.nan.
        # When factoring out the sharpe_ratio, the different return types
        # were collapsed into `np.nan`.
        # TODO: Either fix consumer to accept `np.nan` or make the
        # `sharpe_ratio` return type configurable.
        # In the meantime, convert nan values to 0.0
        if pd.isnull(self.sharpe):
            self.sharpe = 0.0
        self.downside_risk = downside_risk(
            self.algorithm_returns.values
        )
        self.sortino = sortino_ratio(
            self.algorithm_returns.values,
            _downside_risk=self.downside_risk,
        )
        self.information = information_ratio(
            self.algorithm_returns.values,
            self.benchmark_returns.values,
        )
        self.alpha, self.beta = alpha_beta_aligned(
            self.algorithm_returns.values,
            self.benchmark_returns.values,
        )
        self.excess_return = self.algorithm_period_returns - \
            self.treasury_period_return
        self.max_drawdown = max_drawdown(self.algorithm_returns.values)
        self.max_leverage = self.calculate_max_leverage()
示例#31
0
    def update(self, dt, algorithm_returns, benchmark_returns, leverage):
        # Keep track of latest dt for use in to_dict and other methods
        # that report current state.
        self.latest_dt = dt
        dt_loc = self.cont_index.get_loc(dt)
        self.latest_dt_loc = dt_loc

        self.algorithm_returns_cont[dt_loc] = algorithm_returns
        self.algorithm_returns = self.algorithm_returns_cont[:dt_loc + 1]

        self.num_trading_days = len(self.algorithm_returns)

        if self.create_first_day_stats:
            if len(self.algorithm_returns) == 1:
                self.algorithm_returns = np.append(0.0, self.algorithm_returns)

        self.algorithm_cumulative_returns[dt_loc] = cum_returns(
            self.algorithm_returns)[-1]

        algo_cumulative_returns_to_date = \
            self.algorithm_cumulative_returns[:dt_loc + 1]

        self.mean_returns_cont[dt_loc] = \
            algo_cumulative_returns_to_date[dt_loc] / self.num_trading_days

        self.mean_returns = self.mean_returns_cont[:dt_loc + 1]

        self.annualized_mean_returns_cont[dt_loc] = \
            self.mean_returns_cont[dt_loc] * 252

        self.annualized_mean_returns = \
            self.annualized_mean_returns_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.mean_returns) == 1:
                self.mean_returns = np.append(0.0, self.mean_returns)
                self.annualized_mean_returns = np.append(
                    0.0, self.annualized_mean_returns)

        self.benchmark_returns_cont[dt_loc] = benchmark_returns
        self.benchmark_returns = self.benchmark_returns_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.benchmark_returns) == 1:
                self.benchmark_returns = np.append(0.0, self.benchmark_returns)

        self.benchmark_cumulative_returns[dt_loc] = cum_returns(
            self.benchmark_returns)[-1]

        benchmark_cumulative_returns_to_date = \
            self.benchmark_cumulative_returns[:dt_loc + 1]

        self.mean_benchmark_returns_cont[dt_loc] = \
            benchmark_cumulative_returns_to_date[dt_loc] / \
            self.num_trading_days

        self.mean_benchmark_returns = self.mean_benchmark_returns_cont[:dt_loc]

        self.annualized_mean_benchmark_returns_cont[dt_loc] = \
            self.mean_benchmark_returns_cont[dt_loc] * 252

        self.annualized_mean_benchmark_returns = \
            self.annualized_mean_benchmark_returns_cont[:dt_loc + 1]

        self.algorithm_cumulative_leverages_cont[dt_loc] = leverage
        self.algorithm_cumulative_leverages = \
            self.algorithm_cumulative_leverages_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.algorithm_cumulative_leverages) == 1:
                self.algorithm_cumulative_leverages = np.append(
                    0.0, self.algorithm_cumulative_leverages)

        if not len(self.algorithm_returns) and len(self.benchmark_returns):
            message = "Mismatch between benchmark_returns ({bm_count}) and \
algorithm_returns ({algo_count}) in range {start} : {end} on {dt}"

            message = message.format(bm_count=len(self.benchmark_returns),
                                     algo_count=len(self.algorithm_returns),
                                     start=self.start_session,
                                     end=self.end_session,
                                     dt=dt)
            raise Exception(message)

        self.update_current_max()
        self.benchmark_volatility[dt_loc] = annual_volatility(
            self.benchmark_returns)
        self.algorithm_volatility[dt_loc] = annual_volatility(
            self.algorithm_returns)

        # caching the treasury rates for the minutely case is a
        # big speedup, because it avoids searching the treasury
        # curves on every minute.
        # In both minutely and daily, the daily curve is always used.
        treasury_end = dt.replace(hour=0, minute=0)
        if np.isnan(self.daily_treasury[treasury_end]):
            treasury_period_return = choose_treasury(
                self.treasury_curves,
                self.start_session,
                treasury_end,
                self.trading_calendar,
            )
            self.daily_treasury[treasury_end] = treasury_period_return
        self.treasury_period_return = self.daily_treasury[treasury_end]
        self.excess_returns[dt_loc] = (
            self.algorithm_cumulative_returns[dt_loc] -
            self.treasury_period_return)

        self.alpha[dt_loc], self.beta[dt_loc] = alpha_beta_aligned(
            self.algorithm_returns,
            self.benchmark_returns,
        )
        self.sharpe[dt_loc] = sharpe_ratio(self.algorithm_returns, )
        self.downside_risk[dt_loc] = downside_risk(self.algorithm_returns)
        self.sortino[dt_loc] = sortino_ratio(
            self.algorithm_returns, _downside_risk=self.downside_risk[dt_loc])
        self.max_drawdown = max_drawdown(self.algorithm_returns)
        self.max_drawdowns[dt_loc] = self.max_drawdown
        self.max_leverage = self.calculate_max_leverage()
        self.max_leverages[dt_loc] = self.max_leverage
示例#32
0
import pandas as pd
import empyrical as emp

df = pd.read_csv('ac-worth-from-2017/002138.csv')
df['daily_return'] = df['worth'].pct_change()

days = df['date'].count()
return_days = days / 3.347
risk_free = 0.03 / return_days

annual_return = emp.annual_return(df['daily_return'],
                                  annualization=return_days)
max_drawdown = emp.max_drawdown(df['daily_return'])
sharpe_ratio = emp.sharpe_ratio(df['daily_return'],
                                risk_free,
                                annualization=return_days)
sortino_ratio = emp.sortino_ratio(df['daily_return'],
                                  risk_free,
                                  annualization=return_days)
omega_ratio = emp.omega_ratio(df['daily_return'],
                              risk_free,
                              annualization=return_days)
print(annual_return, max_drawdown, sharpe_ratio, sortino_ratio, omega_ratio)
示例#33
0
    def risk_metric_period(cls,
                           start_session,
                           end_session,
                           algorithm_returns,
                           benchmark_returns,
                           algorithm_leverages):
        """
        Creates a dictionary representing the state of the risk report.

        Parameters
        ----------
        start_session : pd.Timestamp
            Start of period (inclusive) to produce metrics on
        end_session : pd.Timestamp
            End of period (inclusive) to produce metrics on
        algorithm_returns : pd.Series(pd.Timestamp -> float)
            Series of algorithm returns as of the end of each session
        benchmark_returns : pd.Series(pd.Timestamp -> float)
            Series of benchmark returns as of the end of each session
        algorithm_leverages : pd.Series(pd.Timestamp -> float)
            Series of algorithm leverages as of the end of each session


        Returns
        -------
        risk_metric : dict[str, any]
            Dict of metrics that with fields like:
                {
                    'algorithm_period_return': 0.0,
                    'benchmark_period_return': 0.0,
                    'treasury_period_return': 0,
                    'excess_return': 0.0,
                    'alpha': 0.0,
                    'beta': 0.0,
                    'sharpe': 0.0,
                    'sortino': 0.0,
                    'period_label': '1970-01',
                    'trading_days': 0,
                    'algo_volatility': 0.0,
                    'benchmark_volatility': 0.0,
                    'max_drawdown': 0.0,
                    'max_leverage': 0.0,
                }
        """

        algorithm_returns = algorithm_returns[
            (algorithm_returns.index >= start_session) &
            (algorithm_returns.index <= end_session)
        ]

        # Benchmark needs to be masked to the same dates as the algo returns
        benchmark_returns = benchmark_returns[
            (benchmark_returns.index >= start_session) &
            (benchmark_returns.index <= algorithm_returns.index[-1])
        ]

        benchmark_period_returns = ep.cum_returns(benchmark_returns).iloc[-1]
        algorithm_period_returns = ep.cum_returns(algorithm_returns).iloc[-1]

        alpha, beta = ep.alpha_beta_aligned(
            algorithm_returns.values,
            benchmark_returns.values,
        )

        sharpe = ep.sharpe_ratio(algorithm_returns)

        # The consumer currently expects a 0.0 value for sharpe in period,
        # this differs from cumulative which was np.nan.
        # When factoring out the sharpe_ratio, the different return types
        # were collapsed into `np.nan`.
        # TODO: Either fix consumer to accept `np.nan` or make the
        # `sharpe_ratio` return type configurable.
        # In the meantime, convert nan values to 0.0
        if pd.isnull(sharpe):
            sharpe = 0.0

        sortino = ep.sortino_ratio(
            algorithm_returns.values,
            _downside_risk=ep.downside_risk(algorithm_returns.values),
        )

        rval = {
            'algorithm_period_return': algorithm_period_returns,
            'benchmark_period_return': benchmark_period_returns,
            'treasury_period_return': 0,
            'excess_return': algorithm_period_returns,
            'alpha': alpha,
            'beta': beta,
            'sharpe': sharpe,
            'sortino': sortino,
            'period_label': end_session.strftime("%Y-%m"),
            'trading_days': len(benchmark_returns),
            'algo_volatility': ep.annual_volatility(algorithm_returns),
            'benchmark_volatility': ep.annual_volatility(benchmark_returns),
            'max_drawdown': ep.max_drawdown(algorithm_returns.values),
            'max_leverage': algorithm_leverages.max(),
        }

        # check if a field in rval is nan or inf, and replace it with None
        # except period_label which is always a str
        return {
            k: (
                None
                if k != 'period_label' and not np.isfinite(v) else
                v
            )
            for k, v in iteritems(rval)
        }
示例#34
0
    def update(self, dt, algorithm_returns, benchmark_returns, leverage):
        # Keep track of latest dt for use in to_dict and other methods
        # that report current state.
        self.latest_dt = dt
        dt_loc = self.cont_index.get_loc(dt)
        self.latest_dt_loc = dt_loc

        self.algorithm_returns_cont[dt_loc] = algorithm_returns
        self.algorithm_returns = self.algorithm_returns_cont[:dt_loc + 1]

        self.num_trading_days = len(self.algorithm_returns)

        if self.create_first_day_stats:
            if len(self.algorithm_returns) == 1:
                self.algorithm_returns = np.append(0.0, self.algorithm_returns)

        self.algorithm_cumulative_returns[dt_loc] = cum_returns(
            self.algorithm_returns
        )[-1]

        algo_cumulative_returns_to_date = \
            self.algorithm_cumulative_returns[:dt_loc + 1]

        self.mean_returns_cont[dt_loc] = \
            algo_cumulative_returns_to_date[dt_loc] / self.num_trading_days

        self.mean_returns = self.mean_returns_cont[:dt_loc + 1]

        self.annualized_mean_returns_cont[dt_loc] = \
            self.mean_returns_cont[dt_loc] * 252

        self.annualized_mean_returns = \
            self.annualized_mean_returns_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.mean_returns) == 1:
                self.mean_returns = np.append(0.0, self.mean_returns)
                self.annualized_mean_returns = np.append(
                    0.0, self.annualized_mean_returns)

        self.benchmark_returns_cont[dt_loc] = benchmark_returns
        self.benchmark_returns = self.benchmark_returns_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.benchmark_returns) == 1:
                self.benchmark_returns = np.append(0.0, self.benchmark_returns)

        self.benchmark_cumulative_returns[dt_loc] = cum_returns(
            self.benchmark_returns
        )[-1]

        benchmark_cumulative_returns_to_date = \
            self.benchmark_cumulative_returns[:dt_loc + 1]

        self.mean_benchmark_returns_cont[dt_loc] = \
            benchmark_cumulative_returns_to_date[dt_loc] / \
            self.num_trading_days

        self.mean_benchmark_returns = self.mean_benchmark_returns_cont[:dt_loc]

        self.annualized_mean_benchmark_returns_cont[dt_loc] = \
            self.mean_benchmark_returns_cont[dt_loc] * 252

        self.annualized_mean_benchmark_returns = \
            self.annualized_mean_benchmark_returns_cont[:dt_loc + 1]

        self.algorithm_cumulative_leverages_cont[dt_loc] = leverage
        self.algorithm_cumulative_leverages = \
            self.algorithm_cumulative_leverages_cont[:dt_loc + 1]

        if self.create_first_day_stats:
            if len(self.algorithm_cumulative_leverages) == 1:
                self.algorithm_cumulative_leverages = np.append(
                    0.0,
                    self.algorithm_cumulative_leverages)

        if not len(self.algorithm_returns) and len(self.benchmark_returns):
            message = "Mismatch between benchmark_returns ({bm_count}) and \
algorithm_returns ({algo_count}) in range {start} : {end} on {dt}"
            message = message.format(
                bm_count=len(self.benchmark_returns),
                algo_count=len(self.algorithm_returns),
                start=self.start_session,
                end=self.end_session,
                dt=dt
            )
            raise Exception(message)

        self.update_current_max()
        self.benchmark_volatility[dt_loc] = annual_volatility(
            self.benchmark_returns
        )
        self.algorithm_volatility[dt_loc] = annual_volatility(
            self.algorithm_returns
        )

        # caching the treasury rates for the minutely case is a
        # big speedup, because it avoids searching the treasury
        # curves on every minute.
        # In both minutely and daily, the daily curve is always used.
        treasury_end = dt.replace(hour=0, minute=0)
        if np.isnan(self.daily_treasury[treasury_end]):
            treasury_period_return = choose_treasury(
                self.treasury_curves,
                self.start_session,
                treasury_end,
                self.trading_calendar,
            )
            self.daily_treasury[treasury_end] = treasury_period_return
        self.treasury_period_return = self.daily_treasury[treasury_end]
        self.excess_returns[dt_loc] = (
            self.algorithm_cumulative_returns[dt_loc] -
            self.treasury_period_return)

        self.alpha[dt_loc], self.beta[dt_loc] = alpha_beta_aligned(
            self.algorithm_returns,
            self.benchmark_returns,
        )
        self.sharpe[dt_loc] = sharpe_ratio(
            self.algorithm_returns,
        )
        self.downside_risk[dt_loc] = downside_risk(
            self.algorithm_returns
        )
        self.sortino[dt_loc] = sortino_ratio(
            self.algorithm_returns,
            _downside_risk=self.downside_risk[dt_loc]
        )
        self.information[dt_loc] = information_ratio(
            self.algorithm_returns,
            self.benchmark_returns,
        )
        self.max_drawdown = max_drawdown(
            self.algorithm_returns
        )
        self.max_drawdowns[dt_loc] = self.max_drawdown
        self.max_leverage = self.calculate_max_leverage()
        self.max_leverages[dt_loc] = self.max_leverage