示例#1
0
def test_bounded_bq_raises_exception(base_gp_wrong_kernel):
    # wrong kernel embedding
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(
            base_gp=base_gp_wrong_kernel,
            X=base_gp_wrong_kernel.X,
            Y=base_gp_wrong_kernel.Y,
            lower_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
        )

    # both upper and lower bound are given
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(
            base_gp=base_gp_wrong_kernel,
            X=base_gp_wrong_kernel.X,
            Y=base_gp_wrong_kernel.Y,
            lower_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
            upper_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
        )

    # no bound is given
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(base_gp=base_gp_wrong_kernel,
                                  X=base_gp_wrong_kernel.X,
                                  Y=base_gp_wrong_kernel.Y)
示例#2
0
def test_bounded_bq_raises(gpy_model):
    gpy_model, _ = gpy_model
    measure = LebesgueMeasure.from_bounds(gpy_model.X.shape[1] * [(0, 1)],
                                          normalized=False)
    qrbf = QuadratureRBFLebesgueMeasure(RBFGPy(gpy_model.kern),
                                        measure=measure)
    base_gp_wrong_kernel = BaseGaussianProcessGPy(kern=qrbf,
                                                  gpy_model=gpy_model)

    # wrong kernel embedding
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(
            base_gp=base_gp_wrong_kernel,
            X=base_gp_wrong_kernel.X,
            Y=base_gp_wrong_kernel.Y,
            lower_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
        )

    # both upper and lower bound are given
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(
            base_gp=base_gp_wrong_kernel,
            X=base_gp_wrong_kernel.X,
            Y=base_gp_wrong_kernel.Y,
            lower_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
            upper_bound=np.min(base_gp_wrong_kernel.Y) - 0.5,
        )

    # no bound is given
    with pytest.raises(ValueError):
        BoundedBayesianQuadrature(base_gp=base_gp_wrong_kernel,
                                  X=base_gp_wrong_kernel.X,
                                  Y=base_gp_wrong_kernel.Y)
示例#3
0
def bounded_bq_upper(base_gp):
    bound = np.max(
        base_gp.Y) + 0.5  # make sure bound is larger than the Y values
    bounded_bq = BoundedBayesianQuadrature(base_gp=base_gp,
                                           X=base_gp.X,
                                           Y=base_gp.Y,
                                           upper_bound=bound)
    return bounded_bq, bound
示例#4
0
def bounded_bq_lower(base_gp):
    bound = np.min(
        base_gp.Y) - 0.5  # make sure bound is lower than the Y values
    bounded_bq = BoundedBayesianQuadrature(base_gp=base_gp,
                                           X=base_gp.X,
                                           Y=base_gp.Y,
                                           lower_bound=bound)
    return bounded_bq, bound
示例#5
0
def integral_mean_from_measure_samples(num_samples: int,
                                       model: BoundedBayesianQuadrature):
    samples = model.measure.get_samples(num_samples=num_samples)
    mean_at_samples, _ = model.predict(samples)
    return np.mean(mean_at_samples)
示例#6
0
                                        kernel=GPy.kern.RBF(input_dim=D))

    # the measure
    measure = IsotropicGaussianMeasure(mean=np.array([0.1, 1.8]), variance=0.8)

    # the emukit base GP
    qrbf = QuadratureRBFIsoGaussMeasure(RBFGPy(gpy_model.kern),
                                        measure=measure)
    base_gp = BaseGaussianProcessGPy(kern=qrbf, gpy_model=gpy_model)

    # the emukit bounded BQ model
    if METHOD == "Bounded BQ lower":
        bound = np.min(base_gp.Y) - 0.5
        model = BoundedBayesianQuadrature(base_gp=base_gp,
                                          X=X,
                                          Y=Y,
                                          bound=bound,
                                          is_lower_bounded=True)
    elif METHOD == "Bounded BQ upper":
        bound = np.max(base_gp.Y) + 0.5
        model = BoundedBayesianQuadrature(base_gp=base_gp,
                                          X=X,
                                          Y=Y,
                                          bound=bound,
                                          is_lower_bounded=False)
    elif METHOD == "WSABI-l adapt":
        model = WSABIL(base_gp=base_gp,
                       X=base_gp.X,
                       Y=base_gp.Y,
                       adapt_alpha=True)
示例#7
0
def get_bounded_bq_upper():
    base_gp, dat = get_base_gp()
    return BoundedBayesianQuadrature(base_gp=base_gp,
                                     X=dat.X,
                                     Y=dat.Y,
                                     upper_bound=dat.bound_upper)