def test_rsunet_zfactor(self): from emvision.models import rsunet_act device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = rsunet_act(width=[3, 4, 5, 6], zfactor=[1, 2, 2], act='ELU').to(device) x = torch.randn(1, 3, 20, 256, 256).to(device) y = net(x)
def test_rsunet_leaky_relu(self): from emvision.models import rsunet_act device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = rsunet_act(width=[3, 4, 5, 6], act='LeakyReLU', negative_slope=0.1).to(device) x = torch.randn(1, 3, 20, 256, 256).to(device) y = net(x)
def create_model(opt): if opt.width: width = opt.width depth = len(width) else: width = [16, 32, 64, 128, 256, 512] depth = opt.depth if opt.group > 0: # Group normalization core = rsunet_act_gn(width=width[:depth], group=opt.group, act=opt.act) else: # Batch normalization core = rsunet_act(width=width[:depth], act=opt.act) return Model(core, opt.in_spec, opt.out_spec, width[0], cropsz=opt.cropsz)