示例#1
0
 def traits_view(self):
     v = View(UItem('container', editor=ComponentEditor()),
              resizable=True,
              handler=self.handler_klass)
     return v
示例#2
0
             Item(
                 name='thresh',
                 label='Pj Thresh.',
                 tooltip=
                 "Threshold for identifying periodic jitter spectral elements. (sigma)",
             ),
             label='Analysis Parameters',
             show_border=True,
         ),
     ),
     label='Config.',
     id='config',
 ),
 Group(Item(
     'plots_dfe',
     editor=ComponentEditor(),
     show_label=False,
 ),
       label='DFE',
       id='plots_dfe'),
 VGroup(
     HGroup(
         VGroup(
             HGroup(
                 Item(
                     name='pretap_tune_enable',
                     label='Enable',
                     tooltip="Enable this tap.",
                 ),
                 Item(
                     name='pretap_tune',
class PlotViewer(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor()))
示例#4
0
class CameraWindow(HasTraits):
    """ CameraWindow class contains the relevant information and functions for a single camera window: image, zoom, pan
    important members:
        _plot_data  - contains image data to display (used by update_image)
        _plot - instance of Plot class to use with _plot_data
        _click_tool - instance of Clicker tool for the single camera window, to handle mouse processing
    """
    _plot_data = Instance(ArrayPlotData)
    _plot = Instance(Plot)
    _click_tool = Instance(Clicker)
    rclicked = Int(0)

    cam_color = ''

    name = Str
    view = View(Item(name='_plot', editor=ComponentEditor(), show_label=False))

    # view = View( Item(name='_plot',show_label=False) )

    def __init__(self, color):
        """ Initialization of plot system
        """
        padd = 25
        self._plot_data = ArrayPlotData()
        self._plot = Plot(self._plot_data, default_origin="top left")
        self._plot.padding_left = padd
        self._plot.padding_right = padd
        self._plot.padding_top = padd
        self._plot.padding_bottom = padd
        self.right_p_x0,self.right_p_y0,self.right_p_x1,self.right_p_y1,self._quiverplots=[],[],[],[],[]
        self.cam_color = color

    def attach_tools(self):
        """ attach_tools(self) contains the relevant tools: clicker, pan, zoom
        """
        self._click_tool = Clicker(self._img_plot)
        self._click_tool.on_trait_change(
            self.left_clicked_event,
            'left_changed')  #set processing events for Clicker
        self._click_tool.on_trait_change(self.right_clicked_event,
                                         'right_changed')
        self._img_plot.tools.append(self._click_tool)
        pan = PanTool(self._plot, drag_button='middle')
        zoom_tool = ZoomTool(self._plot, tool_mode="box", always_on=False)
        #       zoom_tool = BetterZoom(component=self._plot, tool_mode="box", always_on=False)
        zoom_tool.max_zoom_out_factor = 1.0  # Disable "bird view" zoom out
        self._img_plot.overlays.append(zoom_tool)
        self._img_plot.tools.append(pan)

    def left_clicked_event(
        self
    ):  #TODO: why do we need the clicker_tool if we can handle mouse clicks here?
        """ left_clicked_event - processes left click mouse avents and displays coordinate and grey value information
        on the screen
        """
        print("x = %d, y= %d, grey= %d " %
              (self._click_tool.x, self._click_tool.y,
               self._click_tool.data_value))
        #need to priny gray value

    def right_clicked_event(self):
        self.rclicked = 1  #flag that is tracked by main_gui, for right_click_process function of main_gui
        #self._click_tool.y,self.name])
        #self.drawcross("coord_x","coord_y",self._click_tool.x,self._click_tool.y,"red",5)
        #print ("right clicked, "+self.name)
        #need to print cross and manage other camera's crosses

    def update_image(self, image, is_float=False):
        """ update_image - displays/updates image in the curren camera window
        parameters:
            image - image data
            is_float - if true, displays an image as float array,
            else displays as byte array (B&W or gray)
        example usage:
            update_image(image,is_float=False)
        """
        print('image shape = ', image.shape, 'is_float =', is_float)
        if image.ndim > 2:
            image = img_as_ubyte(rgb2gray(image))
            is_float = False

        if is_float:
            self._plot_data.set_data('imagedata', image.astype(np.float))
        else:
            self._plot_data.set_data('imagedata', image.astype(np.byte))

        if not hasattr(
                self,
                '_img_plot'):  #make a new plot if there is nothing to update
            self._img_plot = Instance(ImagePlot)
            self._img_plot = self._plot.img_plot('imagedata', colormap=gray)[0]
            self.attach_tools()

        # self._plot.request_redraw()

    def drawcross(self, str_x, str_y, x, y, color1, mrk_size, marker1="plus"):
        """ drawcross draws crosses at a given location (x,y) using color and marker in the current camera window
        parameters:
            str_x - label for x coordinates
            str_y - label for y coordinates
            x - array of x coordinates
            y - array of y coordinates
            mrk_size - marker size
            makrer1 - type of marker, e.g "plus","circle"
        example usage:
            drawcross("coord_x","coord_y",[100,200,300],[100,200,300],2)
            draws plus markers of size 2 at points (100,100),(200,200),(200,300)
        """
        self._plot_data.set_data(str_x, x)
        self._plot_data.set_data(str_y, y)
        self._plot.plot((str_x, str_y),
                        type="scatter",
                        color=color1,
                        marker=marker1,
                        marker_size=mrk_size)
        #self._plot.request_redraw()

    def drawquiver(self, x1c, y1c, x2c, y2c, color, linewidth=1.0):
        """ drawquiver draws multiple lines at once on the screen x1,y1->x2,y2 in the current camera window
        parameters:
            x1c - array of x1 coordinates
            y1c - array of y1 coordinates
            x2c - array of x2 coordinates
            y2c - array of y2 coordinates
            color - color of the line
            linewidth - linewidth of the line
        example usage:
            drawquiver ([100,200],[100,100],[400,400],[300,200],'red',linewidth=2.0)
            draws 2 red lines with thickness = 2 :  100,100->400,300 and 200,100->400,200

        """
        x1, y1, x2, y2 = self.remove_short_lines(x1c, y1c, x2c, y2c)
        if len(x1) > 0:
            xs = ArrayDataSource(x1)
            ys = ArrayDataSource(y1)

            quiverplot=QuiverPlot(index=xs,value=ys,\
                                  index_mapper=LinearMapper(range=self._plot.index_mapper.range),\
                                  value_mapper=LinearMapper(range=self._plot.value_mapper.range),\
                                  origin = self._plot.origin,arrow_size=0,\
                                  line_color=color,line_width=linewidth,ep_index=np.array(x2),ep_value=np.array(y2)
                                  )
            self._plot.add(quiverplot)
            self._quiverplots.append(
                quiverplot
            )  #we need this to track how many quiverplots are in the current plot
            # import pdb; pdb.set_trace()

    def remove_short_lines(self, x1, y1, x2, y2):
        """ removes short lines from the array of lines
        parameters:
            x1,y1,x2,y2 - start and end coordinates of the lines
        returns:
            x1f,y1f,x2f,y2f - start and end coordinates of the lines, with short lines removed
        example usage:
            x1,y1,x2,y2=remove_short_lines([100,200,300],[100,200,300],[100,200,300],[102,210,320])
            3 input lines, 1 short line will be removed (100,100->100,102)
            returned coordinates:
            x1=[200,300]; y1=[200,300]; x2=[200,300]; y2=[210,320]
        """
        dx, dy = 2, 2  #minimum allowable dx,dy
        x1f, y1f, x2f, y2f = [], [], [], []
        for i in range(len(x1)):
            if abs(x1[i] - x2[i]) > dx or abs(y1[i] - y2[i]) > dy:
                x1f.append(x1[i])
                y1f.append(y1[i])
                x2f.append(x2[i])
                y2f.append(y2[i])
        return x1f, y1f, x2f, y2f

    def drawline(self, str_x, str_y, x1, y1, x2, y2, color1):
        """ drawline draws 1 line on the screen by using lineplot x1,y1->x2,y2
        parameters:
            str_x - label of x coordinate
            str_y - label of y coordinate
            x1,y1,x2,y2 - start and end coordinates of the line
            color1 - color of the line
        example usage:
            drawline("x_coord","y_coord",100,100,200,200,red)
            draws a red line 100,100->200,200
        """
        self._plot_data.set_data(str_x, [x1, x2])
        self._plot_data.set_data(str_y, [y1, y2])
        self._plot.plot((str_x, str_y), type="line", color=color1)
示例#5
0
class ContainerExample(HasTraits):
    plot = Instance(HPlotContainer)
    display_button = Button()
    display_button1 = Button()
    prev = Button()
    next = Button()
    unzoom = Button()

    traits_view = View(
        Group(Item('display_button', show_label=False),
              Item('display_button1', show_label=False),
              Item('prev', show_label=False),
              Item('next', show_label=False),
              Item('unzoom', show_label=False),
              orientation="horizontal"),
        Item('plot', editor=ComponentEditor(), show_label=False),
        # put the info box that lists the mouse location tuple kls karl
        width=1000,
        height=600,
        resizable=True,
        title="Chaco Plot",
        # How do I activate these? buttons=["do_nothing","do_nothing_1"]
    )

    def __init__(self):

        super(ContainerExample, self).__init__()

        filenames = []
        for parameter in sys.argv[1:]:
            print "processing parameter", parameter
            if parameter.find("=") == -1:
                print "no = in parameter", parameter, "must be a file name"
                filenames.append(parameter)
        if len(filenames) < 1:
            print "just to help me test, if there are no files in the list, "
            print "I will append the file foldplot1.rsf"
            filenames.append('foldplot1.rsf')

        self.seis_data_0 = SeisData(filenames[0])
        self.cmap = jet

        self.displayParameters = DisplayParameters()

        self.slice_y = self.displayParameters.slice_y

        print "self.slice_y=", self.slice_y
        self.arrayPlotData = ArrayPlotData()
        self._update_images()

        x_extents = (self.seis_data_0.axis_start[1],
                     self.seis_data_0.axis_end[1])
        y_extents = (self.seis_data_0.axis_start[2],
                     self.seis_data_0.axis_end[2])
        bottomplot = Plot(self.arrayPlotData, origin="top left")
        self.bottomplot = bottomplot
        imgplot = bottomplot.img_plot("xz",
                                      xbounds=x_extents,
                                      ybounds=y_extents,
                                      colormap=self.cmap)[0]
        self.bottom = imgplot

        plotright = Plot(self.arrayPlotData,
                         origin="top left",
                         range2d=bottomplot.range2d)
        imgplotright = plotright.img_plot("xz",
                                          xbounds=x_extents,
                                          ybounds=y_extents,
                                          colormap=self.cmap)[0]
        self.right = imgplotright

        container = HPlotContainer(fill_padding=True,
                                   bgcolor="white",
                                   use_backbuffer=True)
        container.add(bottomplot)
        container.add(plotright)

        self.plot = container

        self.displayParameters = DisplayParameters()
        self.slice_y = self.displayParameters.slice_y

        imgplot.tools.append(CustomTool(imgplot))
        imgplot.tools.append(PanTool(imgplot, constrain_key="shift"))
        imgplot.overlays.append(
            ZoomTool(component=imgplot, tool_mode="box", always_on=False))
        imgplotright.tools.append(PanTool(imgplotright, constrain_key="shift"))
        imgplotright.overlays.append(
            ZoomTool(component=self.right, tool_mode="box", always_on=False))

    def _update_images(self):
        if self.displayParameters.gain != 0:
            rgain = 1. / self.displayParameters.gain
        else:
            rgain = 1
        print "rgain=", rgain
        range = DataRange1D(low=self.seis_data_0.minval * rgain,
                            high=self.seis_data_0.maxval * rgain)
        self.colormap = self.cmap(range)

        slice = transpose(self.seis_data_0.vals[self.slice_y, :, :])
        self.slice = slice
        colorslice = (self.colormap.map_screen(slice) * 255).astype(uint8)
        # Transposed required because img_plot() expects data in row-major order
        #        self.arrayPlotData.set_data("xz", colorslicexz)
        self.arrayPlotData.set_data("xz", colorslice)

    def _marker_size_changed(self):
        self.scatter.marker_size = self.marker_size

    def _color_changed(self):
        self.scatter.marker_size = self.marker_size

    def _display_button_fired(self):
        print "Display button pushed"
        self.displayParameters.edit_traits()
        self._update_images()

    def _prev_fired(self):
        print "prev button pushed"
        slice_y = self.slice_y - self.displayParameters.slice_inc
        if (slice_y < 0):
            slice_y = self.seis_data_0.vals.shape[0] - 1
        print "after decrement slice_y=", slice_y
        self.slice_y = slice_y
        self._update_images()

    def _next_fired(self):
        print "next button pushed"
        slice_y = self.slice_y + self.displayParameters.slice_inc
        print "shape=", self.seis_data_0.vals.shape
        if (slice_y >= self.seis_data_0.vals.shape[0]):
            slice_y = 0
        print "after increment slice_y=", slice_y
        self.slice_y = slice_y
        self._update_images()

    def _unzoom_fired(self):
        print "unzoom button pushed"
        print "self.bottomplot.range2d=", self.bottomplot.range2d
        print "xmin/xmax=", \
            self.bottomplot.range2d.x_range.low, \
            self.bottomplot.range2d.x_range.high
        print "ymin/ymax=", \
            self.bottomplot.range2d.y_range.low, \
            self.bottomplot.range2d.y_range.high

        self.bottomplot.range2d.x_range.low = self.seis_data_0.axis_start[1]
        self.bottomplot.range2d.x_range.high = self.seis_data_0.axis_end[1]
        self.bottomplot.range2d.y_range.low = self.seis_data_0.axis_start[2]
        self.bottomplot.range2d.y_range.high = self.seis_data_0.axis_end[2]
class PlotApp(HasTraits):

    plotdata = Instance(ArrayPlotData)
    numpoints = Int(300)
    symbols = List()

    sym1 = Enum(values="symbols")
    sym2 = Enum(values="symbols")

    returns_plot = Instance(Plot)
    times_ds = Any()  # arraydatasource for the time axis data
    corr_plot = Instance(Plot)
    corr_renderer = Any()

    traits_view = View(
        HSplit(
            Item(
                'returns_plot', editor=ComponentEditor(), show_label=False),
            VGroup(
                VGroup(
                    Item(
                        'sym1', width=-225),
                    Item(
                        'sym2', width=-225), ),
                Item(
                    'corr_plot',
                    editor=ComponentEditor(),
                    show_label=False,
                    width=-275), ), ),
        width=1024,
        height=500,
        resizable=True,
        title="Correlations of returns")

    def __init__(self, *symbols, **kwtraits):
        super(PlotApp, self).__init__(symbols=list(symbols), **kwtraits)
        self._create_data(*symbols)
        self._create_returns_plot()
        self._create_corr_plot()
        if len(self.symbols) > 1:
            self.sym2 = self.symbols[1]

        return

    def _create_returns_plot(self):
        plot = Plot(self.plotdata)
        plot.legend.visible = True
        #FIXME: The legend move tool doesn't seem to quite work right now
        #plot.legend.tools.append(LegendTool(plot.legend))
        plot.x_axis = None
        x_axis = PlotAxis(
            plot,
            orientation="bottom",
            tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem()))
        plot.overlays.append(x_axis)
        plot.x_grid.tick_generator = x_axis.tick_generator
        for i, name in enumerate(self.plotdata.list_data()):
            if name == "times":
                continue
            renderer = plot.plot(
                ("times", name),
                type="line",
                name=name,
                color=tuple(COLOR_PALETTE[i]))[0]

        # Tricky: need to set auto_handle_event on the RangeSelection
        # so that it passes left-clicks to the PanTool
        # FIXME: The range selection is still getting the initial left down
        renderer.tools.append(
            RangeSelection(
                renderer, left_button_selects=False, auto_handle_event=False))
        plot.tools.append(
            PanTool(
                plot,
                drag_button="left",
                constrain=True,
                constrain_direction="x"))
        plot.overlays.append(
            ZoomTool(
                plot, tool_mode="range", max_zoom_out=1.0))
        # Attach the range selection to the last renderer; any one will do
        self._range_selection_overlay = RangeSelectionOverlay(
            renderer, metadata_name="selections")
        renderer.overlays.append(self._range_selection_overlay)
        # Grab a reference to the Time axis datasource and add a listener to its
        # selections metadata
        self.times_ds = renderer.index
        self.times_ds.on_trait_change(self._selections_changed,
                                      'metadata_changed')
        self.returns_plot = plot

    def _create_corr_plot(self):
        plot = Plot(self.plotdata, padding=0)
        plot.padding_left = 25
        plot.padding_bottom = 25
        plot.tools.append(PanTool(plot))
        plot.overlays.append(ZoomTool(plot))
        self.corr_plot = plot

    def _create_data(self, *names):
        numpoints = self.numpoints
        plotdata = ArrayPlotData(times=create_dates(numpoints))
        for name in names:
            plotdata.set_data(
                name, cumprod(random.lognormal(
                    0.0, 0.04, size=numpoints)))
        self.plotdata = plotdata

    def _selections_changed(self, event):
        if self.corr_renderer is None:
            return
        if not isinstance(event, dict) or "selections" not in event:
            return
        corr_index = self.corr_renderer.index
        selections = event["selections"]
        if selections is None:
            corr_index.metadata.pop("selections", None)
            return
        else:
            low, high = selections
            data = self.times_ds.get_data()
            low_ndx = data.searchsorted(low)
            high_ndx = data.searchsorted(high)
            corr_index.metadata["selections"] = arange(
                low_ndx, high_ndx + 1, 1, dtype=int)
            self.corr_plot.request_redraw()

    @on_trait_change("sym1,sym2")
    def _update_corr_symbols(self):
        plot = self.corr_plot
        if self.corr_renderer is not None:
            # Remove the old one
            plot.remove(self.corr_renderer)
            self.corr_renderer = None

        self.corr_renderer = plot.plot(
            (self.sym1, self.sym2), type="scatter", color="blue")[0]
        self.corr_renderer.overlays.append(
            ScatterInspectorOverlay(
                self.corr_renderer, selection_color="lightgreen"))
        plot.request_redraw()
示例#7
0
 def create_editor(self):
     return ComponentEditor()
示例#8
0
                 Item(name='sum_bw',          label='BW (GHz)',  tooltip="summing node bandwidth", enabled_when='sum_ideal == False'),
             ),
             label='DFE Parameters', show_border=True,
             enabled_when='use_dfe == True',
         # enabled_when='rx_use_ami == False  or  rx_use_ami == True and rx_use_getwave == False',
         ),
     ),
     # spring,
     label = 'Config.', id = 'config',
 ),
 Group(
     Item('console_log', show_label=False, style='custom'),
     label = 'Console', id = 'console'
 ),
 Group(
     Item('plots_dfe', editor=ComponentEditor(), show_label=False,),
     label = 'DFE', id = 'plots_dfe'
 ),
 # "EQ Tune" tab.
 VGroup(
     HGroup(
         Group(
             Item(   name='tx_tap_tuners',
                     editor=TableEditor(columns=[ObjectColumn(name='name', editable=False),
                                                 ObjectColumn(name='enabled'),
                                                 ObjectColumn(name='min_val'),
                                                 ObjectColumn(name='max_val'),
                                                 ObjectColumn(name='value', format='%+05.3f'),
                                                ],
                                         configurable=False,
                                         reorderable=False,
示例#9
0
class ThetaTensorPlot(PyannoPlotContainer):

    # reference to the theta tensor for one annotator
    theta = Array

    # reference to an array of samples for theta for one annotator
    theta_samples = Any

    # index of the annotator
    annotator_idx = Int

    # chaco plot of the tensor
    theta_plot = Any

    def _label_name(self, k):
        """Return a name for the data with index `k`."""
        nclasses = self.theta.shape[0]
        ndigits = int(np.ceil(np.log10(nclasses)))
        format_str = 'theta[{{}},{{:{}d}},:]'.format(ndigits)

        return format_str.format(self.annotator_idx, k)

    def _plot_samples(self, plot, plot_data):
        nclasses = self.theta.shape[0]
        nsamples = self.theta_samples.shape[0]

        for k in range(nclasses):
            samples = np.sort(self.theta_samples[:, k, :], axis=0)
            perc5 = samples[int(nsamples * 0.05), :]
            perc95 = samples[int(nsamples * 0.95), :]
            avg = samples.mean(0)

            # build polygon
            index_name = self._label_name(k) + '_confint_index'
            value_name = self._label_name(k) + '_confint_value'
            index_coord = []
            value_coord = []
            # bottom part
            for i in range(nclasses):
                index_coord.append(i)
                value_coord.append(perc5[i])
            # top part
            for i in range(nclasses - 1, -1, -1):
                index_coord.append(i)
                value_coord.append(perc95[i])

            plot_data.set_data(index_name, np.array(index_coord, dtype=float))
            plot_data.set_data(value_name, np.array(value_coord, dtype=float))

            # make color lighter and more transparent
            color = get_class_color(k)
            for i in range(3):
                color[i] = min(1.0, sigmoid(color[i] * 5.))
            color[-1] = 0.3

            plot.plot((index_name, value_name),
                      type='polygon',
                      face_color=color,
                      edge_color='black',
                      edge_width=0.5)

            # add average
            avg_name = self._label_name(k) + '_avg_value'
            plot_data.set_data(avg_name, avg)
            plot.plot(('classes', avg_name),
                      color=get_class_color(k),
                      line_style='dash')

    def _plot_theta_values(self, plot, plot_data):
        theta = self.theta
        nclasses = theta.shape[0]

        data_names = ['classes']
        for k in range(nclasses):
            name = self._label_name(k)
            plot_data.set_data(name, theta[k, :])
            data_names.append(name)

        plots = {}
        for k in range(nclasses):
            name = self._label_name(k)
            line_plot = plot.plot(['classes', name],
                                  line_width=2.,
                                  color=get_class_color(k),
                                  name=name)
            plots[name] = line_plot

        return plots

    def _theta_plot_default(self):

        theta = self.theta
        nclasses = theta.shape[0]

        # create a plot data object and give it this data
        plot_data = ArrayPlotData()

        plot_data.set_data('classes', range(nclasses))

        # create the plot
        plot = Plot(plot_data)

        # --- plot theta samples
        if self.theta_samples is not None:
            self._plot_samples(plot, plot_data)

        # --- plot values of theta
        plots = self._plot_theta_values(plot, plot_data)

        # --- adjust plot appearance

        plot.aspect_ratio = 1.6 if is_display_small() else 1.7

        # adjust axis bounds
        y_high = theta.max()
        if self.theta_samples is not None:
            y_high = max(y_high, self.theta_samples.max())

        plot.range2d = DataRange2D(low=(-0.2, 0.0),
                                   high=(nclasses - 1 + 0.2, y_high * 1.1))

        # create new horizontal axis
        label_axis = self._create_increment_one_axis(plot, 0., nclasses,
                                                     'bottom')
        label_axis.title = 'True classes'
        self._add_index_axis(plot, label_axis)

        # label vertical axis
        plot.value_axis.title = 'Probability'

        # add legend
        legend = Legend(component=plot,
                        plots=plots,
                        align="ur",
                        border_padding=10)
        legend.tools.append(LegendTool(legend, drag_button="left"))
        legend.padding_right = -100
        plot.overlays.append(legend)

        container = VPlotContainer(width=plot.width + 100, halign='left')
        plot.padding_bottom = 50
        plot.padding_top = 10
        plot.padding_left = 0
        container.add(plot)
        container.bgcolor = 0xFFFFFF

        self.decorate_plot(container, theta)

        return container

    #### View definition #####################################################

    resizable_plot_item = Item('theta_plot',
                               editor=ComponentEditor(),
                               resizable=True,
                               show_label=False,
                               height=-250,
                               width=-500)

    traits_plot_item = Instance(Item)

    def _traits_plot_item_default(self):
        height = -200 if is_display_small() else -250
        return Item(
            'theta_plot',
            editor=ComponentEditor(),
            resizable=False,
            show_label=False,
            height=height,
        )
示例#10
0
class ThetaDistrPlot(PyannoPlotContainer):
    """Defines a view of the annotator accuracy parameters, theta.

    The view consists in a Chaco plot that displays the theta parameter for
    each annotator, and samples from the posterior distribution over theta
    as a discretized distribution over theta.
    """

    # reference to the theta tensor for one annotator
    theta = Array

    # reference to an array of samples for theta for one annotator
    theta_samples = Any

    # chaco plot of the tensor
    theta_plot = Any

    def _theta_name(self, k):
        nannotators = self.theta.shape[0]
        ndigits = int(np.ceil(np.log10(nannotators)))
        format_str = 'theta[{{:{}d}}]'.format(ndigits)
        return format_str.format(k)

    def _theta_plot_default(self):
        theta = self.theta
        nannotators = theta.shape[0]
        samples = self.theta_samples

        # plot data object
        plot_data = ArrayPlotData()

        # create the plot
        plot = Plot(plot_data)

        # --- plot theta as vertical dashed lines
        # add vertical lines extremes
        plot_data.set_data('line_extr', [0., 1.])

        for k in range(nannotators):
            name = self._theta_name(k)
            plot_data.set_data(name, [theta[k], theta[k]])

        plots = {}
        for k in range(nannotators):
            name = self._theta_name(k)
            line_plot = plot.plot((name, 'line_extr'),
                                  line_width=2.,
                                  color=get_annotator_color(k),
                                  line_style='dash',
                                  name=name)
            plots[name] = line_plot

        # --- plot samples as distributions
        if samples is not None:
            bins = np.linspace(0., 1., 100)
            max_hist = 0.
            for k in range(nannotators):
                name = self._theta_name(k) + '_distr_'
                hist, x = np.histogram(samples[:, k], bins=bins)
                hist = hist / float(hist.sum())
                max_hist = max(max_hist, hist.max())

                # make "bars" out of histogram values
                y = np.concatenate(([0], np.repeat(hist, 2), [0]))
                plot_data.set_data(name + 'x', np.repeat(x, 2))
                plot_data.set_data(name + 'y', y)

            for k in range(nannotators):
                name = self._theta_name(k) + '_distr_'
                plot.plot((name + 'x', name + 'y'),
                          line_width=2.,
                          color=get_annotator_color(k))

        # --- adjust plot appearance

        plot.aspect_ratio = 1.6 if is_display_small() else 1.7
        plot.padding = [20, 0, 10, 40]

        # adjust axis bounds
        x_low, x_high = theta.min(), theta.max()
        y_low, y_high = 0., 1.
        if samples is not None:
            x_high = max(x_high, samples.max())
            x_low = min(x_low, samples.min())
            y_high = max_hist

        plot.range2d = DataRange2D(low=(max(x_low - 0.05, 0.), y_low),
                                   high=(min(x_high * 1.1,
                                             1.), min(y_high * 1.1, 1.)))

        # label axes
        plot.value_axis.title = 'Probability'
        plot.index_axis.title = 'Theta'

        # add legend
        legend = Legend(component=plot, plots=plots, align="ul", padding=5)
        legend.tools.append(LegendTool(legend, drag_button="left"))
        plot.overlays.append(legend)

        container = VPlotContainer()
        container.add(plot)
        container.bgcolor = 0xFFFFFF

        self.decorate_plot(container, theta)
        self._set_title(plot)

        return container

    #### View definition #####################################################

    resizable_plot_item = Item('theta_plot',
                               editor=ComponentEditor(),
                               resizable=True,
                               show_label=False,
                               width=600)

    traits_plot_item = Instance(Item)

    def _traits_plot_item_default(self):
        height = -220 if is_display_small() else -280
        return Item(
            'theta_plot',
            editor=ComponentEditor(),
            resizable=False,
            show_label=False,
            height=height,
        )
示例#11
0
class ThetaScatterPlot(ModelView, PyannoPlotContainer):
    """Defines a view of the annotator accuracy parameters, theta.

    The view consists in a Chaco plot that displays the theta parameter for
    each annotator, and samples from the posterior distribution over theta
    with a combination of a scatter plot and a candle plot.
    """

    #### Traits definition ####################################################

    theta_samples_valid = Bool(False)
    theta_samples = Array(dtype=float, shape=(None, None))

    # return value for "Copy" action on plot
    data = DictStrAny

    def _data_default(self):
        return {'theta': self.model.theta, 'theta_samples': None}

    @on_trait_change('redraw,theta_samples,theta_samples_valid')
    def _update_data(self):
        if self.theta_samples_valid:
            theta_samples = self.theta_samples
        else:
            theta_samples = None

        self.data['theta'] = self.model.theta
        self.data['theta_samples'] = theta_samples

    #### plot-related traits
    title = Str('Accuracy (theta)')

    theta_plot_data = Instance(ArrayPlotData)
    theta_plot = Any

    redraw = Event

    ### Plot definition #######################################################

    def _compute_range2d(self):
        low = min(0.6, self.model.theta.min() - 0.05)
        if self.theta_samples_valid:
            low = min(low, self.theta_samples.min() - 0.05)
        range2d = DataRange2D(low=(0., low),
                              high=(self.model.theta.shape[0] + 1, 1.))
        return range2d

    @on_trait_change('redraw', post_init=True)
    def _update_range2d(self):
        self.theta_plot.range2d = self._compute_range2d()

    def _theta_plot_default(self):
        """Create plot of theta parameters."""

        # We plot both the thetas and the samples from the posterior; if the
        # latter are not defined, the corresponding ArrayPlotData names
        # should be set to an empty list, so that they are not displayed
        theta = self.model.theta
        theta_len = theta.shape[0]

        # create the plot data
        if not self.theta_plot_data:
            self.theta_plot_data = ArrayPlotData()
            self._update_plot_data()

        # create the plot
        theta_plot = Plot(self.theta_plot_data)

        for idx in range(theta_len):
            # candle plot summarizing samples over the posterior
            theta_plot.candle_plot(
                (_w_idx('index', idx), _w_idx('min', idx), _w_idx(
                    'barmin', idx), _w_idx('avg', idx), _w_idx(
                        'barmax', idx), _w_idx('max', idx)),
                color=get_annotator_color(idx),
                bar_line_color="black",
                stem_color="blue",
                center_color="red",
                center_width=2)

            # plot of raw samples
            theta_plot.plot((_w_idx('ysamples', idx), _w_idx('xsamples', idx)),
                            type='scatter',
                            color='black',
                            marker='dot',
                            line_width=0.5,
                            marker_size=1)

            # plot current parameters
            theta_plot.plot((_w_idx('y', idx), _w_idx('x', idx)),
                            type='scatter',
                            color=get_annotator_color(idx),
                            marker='plus',
                            marker_size=8,
                            line_width=2)

        # adjust axis bounds
        theta_plot.range2d = self._compute_range2d()

        # remove horizontal grid and axis
        theta_plot.underlays = [theta_plot.x_grid, theta_plot.y_axis]

        # create new horizontal axis
        label_list = [str(i) for i in range(theta_len)]

        label_axis = LabelAxis(theta_plot,
                               orientation='bottom',
                               positions=range(1, theta_len + 1),
                               labels=label_list,
                               label_rotation=0)
        # use a FixedScale tick generator with a resolution of 1
        label_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(1.))

        theta_plot.index_axis = label_axis
        theta_plot.underlays.append(label_axis)
        theta_plot.padding = 25
        theta_plot.padding_left = 40
        theta_plot.aspect_ratio = 1.0

        container = VPlotContainer()
        container.add(theta_plot)
        container.bgcolor = 0xFFFFFF

        self.decorate_plot(container, theta)
        self._set_title(theta_plot)

        return container

    ### Handle plot data ######################################################

    def _samples_names_and_values(self, idx):
        """Return a list of names and values for the samples PlotData."""

        # In the following code, we rely on lazy evaluation of the
        # X if CONDITION else Y statements to return a default value if the
        # theta samples are not currently defined, or the real value if they
        # are.

        invalid = not self.theta_samples_valid
        samples = [] if invalid else np.sort(self.theta_samples[:, idx])
        nsamples = None if invalid else samples.shape[0]
        perc5 = None if invalid else samples[int(nsamples * 0.05)]
        perc95 = None if invalid else samples[int(nsamples * 0.95)]

        data_dict = {
            'xsamples': [] if invalid else samples,
            'ysamples': [] if invalid else
            (np.random.random(size=(nsamples, )) * 0.1 - 0.05 + idx + 1.2),
            'min': [] if invalid else [perc5],
            'max': [] if invalid else [perc95],
            'barmin': [] if invalid else [samples.mean() - samples.std()],
            'barmax': [] if invalid else [samples.mean() + samples.std()],
            'avg': [] if invalid else [samples.mean()],
            'index': [] if invalid else [idx + 0.8]
        }

        name_value = [(_w_idx(name, idx), value)
                      for name, value in data_dict.items()]
        return name_value

    @on_trait_change('theta_plot_data,theta_samples_valid,redraw')
    def _update_plot_data(self):
        """Updates PlotData on changes."""
        theta = self.model.theta

        plot_data = self.theta_plot_data

        if plot_data is not None:
            for idx, th in enumerate(theta):
                plot_data.set_data('x%d' % idx, [th])
                plot_data.set_data('y%d' % idx, [idx + 1.2])

                for name_value in self._samples_names_and_values(idx):
                    name, value = name_value
                    plot_data.set_data(name, value)

    #### View definition #####################################################

    resizable_plot_item = Item('theta_plot',
                               editor=ComponentEditor(),
                               resizable=True,
                               show_label=False,
                               width=600,
                               height=400)

    traits_plot_item = Instance(Item)

    def _traits_plot_item_default(self):
        height = -220 if is_display_small() else -280
        return Item('theta_plot',
                    editor=ComponentEditor(),
                    resizable=False,
                    show_label=False,
                    height=height)
示例#12
0
class Bullseye(HasTraits):
    plots = Instance(GridPlotContainer)
    abplots = Instance(VPlotContainer)
    screen = Instance(Plot)
    horiz = Instance(Plot)
    vert = Instance(Plot)
    asum = Instance(Plot)
    bsum = Instance(Plot)

    process = Instance(Process)

    colormap = Enum("gray", "jet", "hot", "prism")
    invert = Bool(True)

    label = None
    gridm = None
    grid = None

    traits_view = View(HGroup(VGroup(
        HGroup(
            VGroup(
                Item("object.process.x", label="Centroid x",
                    format_str=u"%.4g µm",
                    tooltip="horizontal beam position relative to chip "
                    "center"),
                Item("object.process.a", label="Major 4sig",
                    format_str=u"%.4g µm",
                    tooltip="major axis beam width 4 sigma ~ 1/e^2 width"),
                Item("object.process.t", label="Rotation",
                    format_str=u"%.4g°",
                    tooltip="angle between horizontal an major axis"),
                #Item("object.process.black", label="Black",
                #    format_str=u"%.4g",
                #    tooltip="background black level"),
            ), VGroup(
                Item("object.process.y", label="Centroid y",
                    format_str=u"%.4g µm",
                    tooltip="vertical beam position relative to chip "
                    "center"),
                Item("object.process.b", label="Minor 4sig",
                    format_str=u"%.4g µm",
                    tooltip="major axis beam width 4 sigma ~ 1/e^2 width"),
                #Item("object.process.d", label="Mean width",
                #    format_str=u"%.4g µm",
                #    tooltip="mean beam width 4 sigma ~ 1/e^2 width"),
                #Item("object.process.e", label="Ellipticity",
                #    format_str=u"%.4g",
                #    tooltip="ellipticity minor-to-major width ratio"),
                #Item("object.process.peak", label="Peak",
                #    format_str=u"%.4g",
                #    tooltip="peak pixel level"),
                Item("object.process.include_radius", label="Include radius",
                    format_str=u"%.4g µm",
                    tooltip="energy inclusion radius according to ignore "
                    "level, used to crop before taking moments"),
            ),
            style="readonly",
        ), VGroup(
            Item("object.process.capture.shutter",
                tooltip="exposure time per frame in seconds"),
            Item("object.process.capture.gain",
                tooltip="analog camera gain in dB"),
            Item("object.process.capture.framerate",
                tooltip="frames per second to attempt, may be limited by "
                "shutter time and processing speed"),
            Item("object.process.capture.average",
                tooltip="number of subsequent images to boxcar average"),
            Item("object.process.background",
                tooltip="background intensity percentile to subtract "
                "from image"),
            Item("object.process.ignore",
                tooltip="fraction of total intensity to ignore for "
                "cropping, determines include radius"),
        ), HGroup(
            Item("object.process.active",
                tooltip="capture and processing running"),
            Item("object.process.capture.auto_shutter",
                tooltip="adjust the shutter time to "
                "yield acceptably exposed frames with peak values "
                "between .25 and .75"),
            Item("object.process.track",
                tooltip="adjust the region of interest to track the "
                "beam center, the size is not adjusted"),
            Item("object.process.capture.dark",
                tooltip="capture a dark image and subtract it from "
                "subsequent images, reset if gain or shutter change"),
        ), HGroup(
            UItem("colormap", tooltip="image colormap"),
            Item("invert", tooltip="invert the colormap"),
        ), UItem("abplots", editor=ComponentEditor(),
                width=-200, height=-300, resizable=False,
                tooltip="line sums (red), moments (blue) and "
                "2-sigma markers (green) along the major and minor axes",
        ),
    ), UItem("plots", editor=ComponentEditor(), width=800,
            tooltip="top right: beam image with 2-sigma and 6-sigma "
            "radius ellipses and axis markers (green). top left and bottom "
            "right: vertial and horizontal line sums (red), moments "
            "(blue) and 2-sigma markers (green). bottom left: beam data "
            "from moments"),
    layout="split",
    ), resizable=True, title=u"Bullseye ― Beam Profiler", width=1000)

    def __init__(self, **k):
        super(Bullseye, self).__init__(**k)
        self.data = ArrayPlotData()
        self.process.initialize()
        self.setup_plots()
        self.update_data()
        self.populate_plots()

        self.on_trait_change(self.update_data, "process.new_data",
                dispatch="fast_ui")

    def setup_plots(self):
        self.screen = Plot(self.data,
                resizable="hv", padding=0, bgcolor="lightgray",
                border_visible=False)
        self.screen.index_grid.visible = False
        self.screen.value_grid.visible = False
        px = self.process.capture.pixelsize
        w, h = self.process.capture.width, self.process.capture.height
        # value_range last, see set_range()
        self.screen.index_range.low_setting = -w/2*px
        self.screen.index_range.high_setting = w/2*px
        self.screen.value_range.low_setting = -h/2*px
        self.screen.value_range.high_setting = h/2*px

        self.horiz = Plot(self.data,
                resizable="h", padding=0, height=100,
                bgcolor="lightgray", border_visible=False)
        self.horiz.value_mapper.range.low_setting = \
                -.1*self.process.capture.maxval
        self.horiz.index_range = self.screen.index_range
        self.vert = Plot(self.data, orientation="v",
                resizable="v", padding=0, width=100,
                bgcolor="lightgray", border_visible=False)
        for p in self.horiz, self.vert:
            p.index_axis.visible = False
            p.value_axis.visible = False
            p.index_grid.visible = True
            p.value_grid.visible = False
        self.vert.value_mapper.range.low_setting = \
                -.1*self.process.capture.maxval
        self.vert.index_range = self.screen.value_range

        #self.vert.value_range = self.horiz.value_range

        self.mini = Plot(self.data,
                width=100, height=100, resizable="", padding=0,
                bgcolor="lightgray", border_visible=False)
        self.mini.index_axis.visible = False
        self.mini.value_axis.visible = False
        self.label = PlotLabel(component=self.mini,
                overlay_position="inside left", font="modern 10",
                text=self.process.text)
        self.mini.overlays.append(self.label)

        self.plots = GridPlotContainer(shape=(2, 2), padding=0,
                spacing=(5, 5), use_backbuffer=True,
                bgcolor="lightgray")
        self.plots.component_grid = [[self.vert, self.screen],
                                     [self.mini, self.horiz ]]

        self.screen.overlays.append(ZoomTool(self.screen,
            x_max_zoom_factor=1e2, y_max_zoom_factor=1e2,
            x_min_zoom_factor=0.5, y_min_zoom_factor=0.5,
            zoom_factor=1.2))
        self.screen.tools.append(PanTool(self.screen))
        self.plots.tools.append(SaveTool(self.plots,
            filename="bullseye.pdf"))

        self.asum = Plot(self.data,
                padding=0, height=100, bgcolor="lightgray",
                title="major axis", border_visible=False)
        self.bsum = Plot(self.data,
                padding=0, height=100, bgcolor="lightgray",
                title="minor axis", border_visible=False)
        for p in self.asum, self.bsum:
            p.value_axis.visible = False
            p.value_grid.visible = False
            p.title_font = "modern 10"
            p.title_position = "left"
            p.title_angle = 90
        # lock scales
        #self.bsum.value_range = self.asum.value_range
        #self.bsum.index_range = self.asum.index_range

        self.abplots = VPlotContainer(padding=20, spacing=20,
                use_backbuffer=True,bgcolor="lightgray",
                fill_padding=True)
        self.abplots.add(self.bsum, self.asum)

    def populate_plots(self):
        self.screenplot = self.screen.img_plot("img",
                xbounds="xbounds", ybounds="ybounds",
                interpolation="nearest",
                colormap=color_map_name_dict[self.colormap],
                )[0]
        self.set_invert()
        self.grid = self.screenplot.index
        self.gridm = self.screenplot.index_mapper
        t = ImageInspectorTool(self.screenplot)
        self.screen.tools.append(t)
        self.screenplot.overlays.append(ImageInspectorOverlay(
            component=self.screenplot, image_inspector=t,
            border_size=0, bgcolor="transparent", align="ur",
            tooltip_mode=False, font="modern 10"))

        self.horiz.plot(("x", "imx"), type="line", color="red")
        self.vert.plot(("y", "imy"), type="line", color="red")
        self.horiz.plot(("x", "gx"), type="line", color="blue")
        self.vert.plot(("y", "gy"), type="line", color="blue")
        self.asum.plot(("a", "ima"), type="line", color="red")
        self.bsum.plot(("b", "imb"), type="line", color="red")
        self.asum.plot(("a", "ga"), type="line", color="blue")
        self.bsum.plot(("b", "gb"), type="line", color="blue")

        for p in [("ell1_x", "ell1_y"), ("ell3_x", "ell3_y"),
                ("a_x", "a_y"), ("b_x", "b_y")]:
            self.screen.plot(p, type="line", color="green", alpha=.5)

        for r, s in [("x", self.horiz), ("y", self.vert),
                ("a", self.asum), ("b", self.bsum)]:
            for p in "0 p m".split():
                q = ("%s%s_mark" % (r, p), "%s_bar" % r)
                s.plot(q, type="line", color="green")

    def __del__(self):
        self.close()

    def close(self):
        self.process.active = False

    @on_trait_change("colormap")
    def set_colormap(self):
        p = self.screenplot
        m = color_map_name_dict[self.colormap]
        p.color_mapper = m(p.value_range)
        self.set_invert()
        p.request_redraw()

    @on_trait_change("invert")
    def set_invert(self):
        p = self.screenplot
        if self.invert:
            a, b = self.process.capture.maxval, 0
        else:
            a, b = 0, self.process.capture.maxval
        p.color_mapper.range.low_setting = a
        p.color_mapper.range.high_setting = b

    # TODO: bad layout for one frame at activation, track
    # value_range seems to be updated after index_range, take this
    @on_trait_change("screen.value_range.updated")
    def set_range(self):
        if self.gridm is not None:
            #enforce data/screen aspect ratio 1
            sl, sr, sb, st = self.gridm.screen_bounds
            dl, db = self.gridm.range.low
            dr, dt = self.gridm.range.high
            #dsdx = float(sr-sl)/(dr-dl)
            dsdy = float(st-sb)/(dt-db)
            #dt_new = db+(st-sb)/dsdx
            if dsdy:
                dr_new = dl+(sr-sl)/dsdy
                self.gridm.range.x_range.high_setting = dr_new
        l, r = self.screen.index_range.low, self.screen.index_range.high
        b, t = self.screen.value_range.low, self.screen.value_range.high
        px = self.process.capture.pixelsize
        self.process.capture.roi = [l, b, r-l, t-b]

    def update_data(self):
        if self.label is not None:
            self.label.text = self.process.text
        upd = self.process.data
        self.data.arrays.update(upd)
        self.data.data_changed = {"changed": upd.keys()}
        if self.grid is not None:
            self.grid.set_data(upd["xbounds"], upd["ybounds"])
示例#13
0
class plot_window(HasTraits):
    _plot_data = Instance(ArrayPlotData)
    _plot = Instance(Plot)
    _click_tool = Instance(clicker_tool)
    _img_plot = Instance(ImagePlot)
    _right_click_avail = 0
    name = Str
    view = View(Item(name='_plot', editor=ComponentEditor(),
                     show_label=False), )

    def __init__(self):
        # -------------- Initialization of plot system ----------------
        padd = 25
        self._plot_data = ArrayPlotData()
        self._x = []
        self._y = []
        self.man_ori = [1, 2, 3, 4]
        self._plot = Plot(self._plot_data, default_origin="top left")
        self._plot.padding_left = padd
        self._plot.padding_right = padd
        self._plot.padding_top = padd
        self._plot.padding_bottom = padd
        self._quiverplots = []

        # -------------------------------------------------------------
    def left_clicked_event(self):
        print("left clicked")
        if len(self._x) < 4:
            self._x.append(self._click_tool.x)
            self._y.append(self._click_tool.y)
        print self._x
        print self._y
        self.drawcross("coord_x", "coord_y", self._x, self._y, "red", 5)
        self._plot.overlays = []
        self.plot_num_overlay(self._x, self._y, self.man_ori)

    def right_clicked_event(self):
        print("right clicked")
        if len(self._x) > 0:
            self._x.pop()
            self._y.pop()
            print self._x
            print self._y
            self.drawcross("coord_x", "coord_y", self._x, self._y, "red", 5)
            self._plot.overlays = []
            self.plot_num_overlay(self._x, self._y, self.man_ori)
        else:
            if (self._right_click_avail):
                print "deleting point"
                self.py_rclick_delete(self._click_tool.x, self._click_tool.y,
                                      self.cameraN)
                x = []
                y = []
                self.py_get_pix_N(x, y, self.cameraN)
                self.drawcross("x", "y", x[0], y[0], "blue", 4)

    def attach_tools(self):
        self._click_tool = clicker_tool(self._img_plot)
        self._click_tool.on_trait_change(self.left_clicked_event,
                                         'left_changed')
        self._click_tool.on_trait_change(self.right_clicked_event,
                                         'right_changed')
        self._img_plot.tools.append(self._click_tool)
        self._zoom_tool = SimpleZoom(component=self._plot,
                                     tool_mode="box",
                                     always_on=False)
        self._zoom_tool.max_zoom_out_factor = 1.0
        self._img_plot.tools.append(self._zoom_tool)
        if self._plot.index_mapper is not None:
            self._plot.index_mapper.on_trait_change(self.handle_mapper,
                                                    'updated',
                                                    remove=False)
        if self._plot.value_mapper is not None:
            self._plot.value_mapper.on_trait_change(self.handle_mapper,
                                                    'updated',
                                                    remove=False)

    def drawcross(self, str_x, str_y, x, y, color1, mrk_size):
        self._plot_data.set_data(str_x, x)
        self._plot_data.set_data(str_y, y)
        self._plot.plot((str_x, str_y),
                        type="scatter",
                        color=color1,
                        marker="plus",
                        marker_size=mrk_size)
        self._plot.request_redraw()

    def drawline(self, str_x, str_y, x1, y1, x2, y2, color1):
        self._plot_data.set_data(str_x, [x1, x2])
        self._plot_data.set_data(str_y, [y1, y2])
        self._plot.plot((str_x, str_y), type="line", color=color1)
        self._plot.request_redraw()

    def drawquiver(self, x1c, y1c, x2c, y2c, color, linewidth=1.0, scale=1.0):
        """ drawquiver draws multiple lines at once on the screen x1,y1->x2,y2 in the current camera window
        parameters:
            x1c - array of x1 coordinates
            y1c - array of y1 coordinates
            x2c - array of x2 coordinates
            y2c - array of y2 coordinates
            color - color of the line
            linewidth - linewidth of the line
        example usage:
            drawquiver ([100,200],[100,100],[400,400],[300,200],'red',linewidth=2.0)
            draws 2 red lines with thickness = 2 :  100,100->400,300 and 200,100->400,200

        """
        x1, y1, x2, y2 = self.remove_short_lines(x1c,
                                                 y1c,
                                                 x2c,
                                                 y2c,
                                                 min_length=0)
        if len(x1) > 0:
            xs = ArrayDataSource(x1)
            ys = ArrayDataSource(y1)

            quiverplot = QuiverPlot(
                index=xs,
                value=ys,
                index_mapper=LinearMapper(range=self._plot.index_mapper.range),
                value_mapper=LinearMapper(range=self._plot.value_mapper.range),
                origin=self._plot.origin,
                arrow_size=0,
                line_color=color,
                line_width=linewidth,
                ep_index=np.array(x2) * scale,
                ep_value=np.array(y2) * scale)
            self._plot.add(quiverplot)
            # we need this to track how many quiverplots are in the current
            # plot
            self._quiverplots.append(quiverplot)
            # import pdb; pdb.set_trace()

    def remove_short_lines(self, x1, y1, x2, y2, min_length=2):
        """ removes short lines from the array of lines
        parameters:
            x1,y1,x2,y2 - start and end coordinates of the lines
        returns:
            x1f,y1f,x2f,y2f - start and end coordinates of the lines, with short lines removed
        example usage:
            x1,y1,x2,y2=remove_short_lines([100,200,300],[100,200,300],[100,200,300],[102,210,320])
            3 input lines, 1 short line will be removed (100,100->100,102)
            returned coordinates:
            x1=[200,300]; y1=[200,300]; x2=[200,300]; y2=[210,320]
        """
        # dx, dy = 2, 2  # minimum allowable dx,dy
        x1f, y1f, x2f, y2f = [], [], [], []
        for i in range(len(x1)):
            if abs(x1[i] - x2[i]) > min_length or abs(y1[i] -
                                                      y2[i]) > min_length:
                x1f.append(x1[i])
                y1f.append(y1[i])
                x2f.append(x2[i])
                y2f.append(y2[i])
        return x1f, y1f, x2f, y2f

    def handle_mapper(self):
        for i in range(0, len(self._plot.overlays)):
            if hasattr(self._plot.overlays[i], 'real_position'):
                coord_x1, coord_y1 = self._plot.map_screen(
                    [self._plot.overlays[i].real_position])[0]
                self._plot.overlays[i].alternate_position = (coord_x1,
                                                             coord_y1)

    def plot_num_overlay(self, x, y, txt):
        for i in range(0, len(x)):
            coord_x, coord_y = self._plot.map_screen([(x[i], y[i])])[0]
            ovlay = TextBoxOverlay(component=self._plot,
                                   text=str(txt[i]),
                                   alternate_position=(coord_x, coord_y),
                                   real_position=(x[i], y[i]),
                                   text_color="white",
                                   border_color="red")
            self._plot.overlays.append(ovlay)

    def update_image(self, image, is_float):
        if is_float:
            self._plot_data.set_data('imagedata', image.astype(np.float))
        else:
            self._plot_data.set_data('imagedata', image.astype(np.byte))
        self._plot.request_redraw()
示例#14
0
文件: display2.py 项目: jcapriot/src
class ContainerExample(HasTraits):
    plot = Instance(HPlotContainer)
    display_button = Button()
    display_button1 = Button()
    prev = Button()
    next = Button()
    unzoom = Button()

    traits_view = View(
        Group(Item('display_button', show_label=False),
              Item('display_button1', show_label=False),
              Item('prev', show_label=False),
              Item('next', show_label=False),
              Item('unzoom', show_label=False),
              orientation="horizontal"),
        Item('plot', editor=ComponentEditor(), show_label=False),
        # put the info box that lists the mouse location tuple kls karl
        width=1000,
        height=600,
        resizable=True,
        title="Madagascar Comparison",
        # How do I activate these? buttons=["do_nothing","do_nothing_1"]
    )

    def __init__(self):

        super(ContainerExample, self).__init__()

        # make a list of the files names on the command line
        # command line entries without = are assumed to be files
        filenames = []
        for parameter in sys.argv[1:]:
            print("processing parameter", parameter)
            if parameter.find("=") == -1:
                print("no = in parameter", parameter, "must be a file name")
                filenames.append(parameter)
        if len(filenames) < 1:
            print("just to help me test, if there are no files in the list, ")
            print("I will append the file foldplot1.rsf")
            filenames.append('foldplot1.rsf')

        # there should be a try while these files are opened to identify
        # bad file names and make error messages.

        self.seis_data = []
        for filename in filenames:
            print("  ")
            print("+++++++++++++++++++++++++++++++++++++++++++")
            print("+++++++++++++++++++++++++++++++++++++++++++")
            print("open the file", filename)
            self.seis_data.append(SeisData(filename))

        # kls files should be tested to make sure they are all same shape
        print("number files=", len(filenames))
        self.displayParameters = DisplayParameters()
        self.cmap = jet  # kls this should come from display parameters

        self.slice_y = self.displayParameters.slice_y  # kls this should be pointer

        print("self.slice_y=", self.slice_y)
        self.arrayPlotDatas = []
        for filename in filenames:
            self.arrayPlotDatas.append(ArrayPlotData())
        self._update_images()

        x_extents = (self.seis_data[0].axis_start[1],
                     self.seis_data[0].axis_end[1])
        y_extents = (self.seis_data[0].axis_start[2],
                     self.seis_data[0].axis_end[2])
        bottomplot = Plot(self.arrayPlotDatas[0], origin="top left")
        self.bottomplot = bottomplot
        imgplot = bottomplot.img_plot("xz",
                                      xbounds=x_extents,
                                      ybounds=y_extents,
                                      colormap=self.cmap)[0]
        self.bottom = imgplot

        plotright = Plot(self.arrayPlotDatas[1],
                         origin="top left",
                         range2d=bottomplot.range2d)
        imgplotright = plotright.img_plot("xz",
                                          xbounds=x_extents,
                                          ybounds=y_extents,
                                          colormap=self.cmap)[0]
        self.right = imgplotright

        container = HPlotContainer(fill_padding=True,
                                   bgcolor="white",
                                   use_backbuffer=True)
        container.add(bottomplot)
        container.add(plotright)

        self.plot = container

        self.displayParameters = DisplayParameters()
        self.slice_y = self.displayParameters.slice_y

        imgplot.tools.append(CustomTool(imgplot))
        imgplot.tools.append(PanTool(imgplot, constrain_key="shift"))
        imgplot.overlays.append(
            ZoomTool(component=imgplot, tool_mode="box", always_on=False))
        imgplotright.tools.append(PanTool(imgplotright, constrain_key="shift"))
        imgplotright.overlays.append(
            ZoomTool(component=self.right, tool_mode="box", always_on=False))

    def _update_image(self, number):
        if self.displayParameters.gain != 0:
            rgain = 1. / self.displayParameters.gain
        else:
            rgain = 1
        print("rgain=", rgain)
        range = DataRange1D(low=self.seis_data[number].minval * rgain,
                            high=self.seis_data[number].maxval * rgain)
        self.colormap = self.cmap(range)

        slice = transpose(self.seis_data[number].vals[self.slice_y, :, :])
        self.slice = slice
        colorslice = (self.colormap.map_screen(slice) * 255).astype(uint8)
        # Transposed required because img_plot() expects data in row-major order
        #        self.arrayPlotData.set_data("xz", colorslicexz)
        self.arrayPlotDatas[number].set_data("xz", colorslice)

    def _update_images(self):
        for imageindex in range(len(self.seis_data)):
            self._update_image(imageindex)

    def _marker_size_changed(self):
        self.scatter.marker_size = self.marker_size

    def _color_changed(self):
        self.scatter.marker_size = self.marker_size

    def _display_button_fired(self):
        print("Display button pushed")
        self.displayParameters.edit_traits()
        self._update_images()

    def _prev_fired(self):
        print("prev button pushed")
        slice_y = self.slice_y - self.displayParameters.slice_inc
        if (slice_y < 0):
            slice_y = self.seis_data[0].vals.shape[0] - 1
        print("after decrement slice_y=", slice_y)
        self.slice_y = slice_y
        self._update_images()

    def _next_fired(self):
        print("next button pushed")
        slice_y = self.slice_y + self.displayParameters.slice_inc
        print("shape=", self.seis_data[0].vals.shape)
        if (slice_y >= self.seis_data[0].vals.shape[0]):
            slice_y = 0
        print("after increment slice_y=", slice_y)
        self.slice_y = slice_y
        self._update_images()

    def _unzoom_fired(self):
        print("unzoom button pushed")
        print("self.bottomplot.range2d=", self.bottomplot.range2d)
        print("xmin/xmax=", \
            self.bottomplot.range2d.x_range.low, \
            self.bottomplot.range2d.x_range.high)
        print("ymin/ymax=", \
            self.bottomplot.range2d.y_range.low, \
            self.bottomplot.range2d.y_range.high)

        self.bottomplot.range2d.x_range.low = self.seis_data[0].axis_start[1]
        self.bottomplot.range2d.x_range.high = self.seis_data[0].axis_end[1]
        self.bottomplot.range2d.y_range.low = self.seis_data[0].axis_start[2]
        self.bottomplot.range2d.y_range.high = self.seis_data[0].axis_end[2]
示例#15
0
class PricePlot(HasTraits):

    plot = Instance(Plot)

    traits_view = View(
                        Item('plot', editor=ComponentEditor(), show_label=False),
                        width=1200, height=1000, resizable=True, title="Bitcoin Prices")


    def __init__(self, time, buy, sell, weighted_buy, weighted_sell):

        t = numpy.array(time)       # Convert lists to numpy arrays in preparation for plotting
        b = numpy.array(buy)
        s = numpy.array(sell)
        wb = numpy.array(weighted_buy)
        ws = numpy.array(weighted_sell)

        self.t = t
        self.b = b
        self.s = s

        plot_data = ArrayPlotData(t=t, b=b, s=s, wb=wb, ws=ws)

        plot = Plot(plot_data)
        self.plot = plot

        # Calculate range of plot so it shows latest 1 day of data
        end = t[-1]
        start = end - 86400

        self._configure_plot(plot, start, end)

        # Scatter point for prices
        buy_renderer = plot.plot(("t", "b"), type="scatter", color=RED)[0]
        sell_renderer = plot.plot(("t", "s"), type="scatter", color=GREEN)[0]

        # Line plot to connect the scatter points together
        plot.plot(("t", "b"), type="line", color=LIGHT_RED)        # Using RGBA color tuple to get a lighter color
        plot.plot(("t", "s"), type="line", color=LIGHT_GREEN)

        # Line plot of moving average of prices (thicker to indicate this fact)
        plot.plot(("t", "wb"), type="line", color=RED, line_width=2)
        plot.plot(("t", "ws"), type="line", color=GREEN, line_width=2)

        buy_renderer.marker_size = 3
        buy_renderer.marker = "circle"

        sell_renderer.marker_size = 3
        sell_renderer.marker = "circle"

        plot.title = "Current Price - Buy: ${} - Sell: ${}".format(buy[-1], sell[-1])       # Display current price in title


    def _configure_plot(self, plot, start, end):
        """
        Configures the appearance of the plot
        """

        plot.bgcolor = "black"
        plot.title_color = "white"

        plot.y_axis.orientation = "right"
        plot.y_axis.tick_color = "white"
        plot.y_axis.tick_label_color = "white"

        plot.x_axis.tick_color = "white"
        plot.x_axis.tick_label_color = "white"

        plot.x_grid.line_weight = 0         # Remove x Grid lines

        pan = PanTool(component=plot)       # Set up PanTool so that it is constrained to move along the x-direction only
        pan.constrain = True
        pan.constrain_direction = 'x'
        plot.tools.append(pan)        # Add Pan and Zoom abilities to the plot

        zoom = ZoomTool(component=plot, tool_mode="range", axis="index", always_on=False)       # We create the ZoomTool to zoom along the x-axis only
        plot.tools.append(zoom)

        plot.x_axis.tick_label_formatter = lambda tick: self._format_time(tick)      # Set formatter for time axis tick labels

        plot.index_mapper.range.set_bounds(start, end)         # Set range of index (x values i.e. domain)

        plot.index_mapper.range.on_trait_change(self._xrange_changed, name='_low_value')        # We attach a listener on the range that is called when the _low_value attribute is changed
        self._xrange_changed()      # We call this initially to fit the y-range initially


    def _y_bounds(self):
        """
        Calculates the min and max values of the arrays b and s in the x-range currently chosen
        """

        (a, b) = self.plot.index_mapper.range.bound_data(self.t)        # We find the indices that bound the data self.t in the currently chosen x_range

        min = 1e6       # Start with a maximum possible value from which to go down
        max = 0

        for jj in range(a, b):      # We iterate over the indices of the bounds finding the min and max values of self.b and self.s in the range

            if self.b[jj] < min:
                min = self.b[jj]

            if self.s[jj] < min:
                min = self.s[jj]

            if self.b[jj] > max:
                max = self.b[jj]

            if self.s[jj] > max:
                max = self.b[jj]

        return min, max


    def _xrange_changed(self):
        """
        Method called when the xrange is changed so that the yrange can be changed to better fit the y-values
        """
        # Calculate the highest and lowest value of the graphs in the specified x-range.
        (y_min, y_max) = self._y_bounds()
        delta = 0.1 * (y_max - y_min)       # We calculate margins on the bound using 10% of the data-spread

        self.plot.value_mapper.range.set_bounds(y_min - delta, y_max + delta)


    def _format_time(self, time):
        """
        Method for taking the Unix timestamp in the time-series domain and converting it in to a human-readable format
        """
        return datetime.datetime.fromtimestamp(time).strftime("%m-%d %H:%M")
示例#16
0
class MyPlot(HasTraits):
    """ Displays a plot with a few buttons to control which overlay
        to display
    """
    plot = Instance(Plot)
    status_overlay = Instance(StatusLayer)

    error_button = Button('Error')
    warn_button = Button('Warning')
    no_problem_button = Button('No problem')

    traits_view = View(
        HGroup(UItem('error_button'), UItem('warn_button'),
               UItem('no_problem_button')),
        UItem('plot', editor=ComponentEditor()),
        width=700,
        height=600,
        resizable=True,
    )

    def __init__(self, index, data_series, **kw):
        super(MyPlot, self).__init__(**kw)

        plot_data = ArrayPlotData(index=index)
        plot_data.set_data('data_series', data_series)
        self.plot = Plot(plot_data)
        self.plot.plot(('index', 'data_series'))

    def _error_button_fired(self, event):
        """ removes the old overlay and replaces it with
            an error overlay
        """
        self.clear_status()

        self.status_overlay = ErrorLayer(component=self.plot,
                                         align='ul',
                                         scale_factor=0.25)
        self.plot.overlays.append(self.status_overlay)

        self.plot.request_redraw()

    def _warn_button_fired(self, event):
        """ removes the old overlay and replaces it with
            an warning overlay
        """
        self.clear_status()

        self.status_overlay = WarningLayer(component=self.plot,
                                           align='ur',
                                           scale_factor=0.25)
        self.plot.overlays.append(self.status_overlay)

        self.plot.request_redraw()

    def _no_problem_button_fired(self, event):
        """ removes the old overlay
        """
        self.clear_status()
        self.plot.request_redraw()

    def clear_status(self):
        if self.status_overlay in self.plot.overlays:
            # fade_out will remove the overlay when its done
            self.status_overlay.fade_out()
示例#17
0
文件: display.py 项目: jcapriot/src
class ContainerExample(HasTraits):
    plot = Instance(Plot)
    display_button = Button()
    display_button1 = Button()

    traits_view = View(Group(Item('display_button', show_label=False),
                             Item('display_button1', show_label=False),
                             orientation="horizontal"),
                       Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=1000,
                       height=600,
                       resizable=True,
                       title="Chaco Plot",
                       buttons=["prev", "next", "new data"])

    def __init__(self):

        super(ContainerExample, self).__init__()

        filenames = []
        for parameter in sys.argv[1:]:
            print("processing parameter", parameter)
            if parameter.find("=") == -1:
                print("no = in parameter", parameter, "must be a file name")
                filenames.append(parameter)
        if len(filenames) < 1:
            print("just to help me test, if there are no files in the list, ")
            print("I will append the file foldplot1.rsf")
            filenames.append('foldplot1.rsf')

        self.seis_data_0 = SeisData(filenames[0])
        self.cmap = jet

        self.displayParameters = DisplayParameters()

        self.slice_y = self.displayParameters.slice_y
        print("self.slice_y=", self.slice_y)
        self.arrayPlotData = ArrayPlotData()
        self._update_images()
        bottomplot = Plot(self.arrayPlotData, padding=0, origin="top left")
        imgplot = bottomplot.img_plot("xz",
                                      xbounds=(self.seis_data_0.axis_start[0],
                                               self.seis_data_0.axis_end[0]),
                                      ybounds=(self.seis_data_0.axis_start[2],
                                               self.seis_data_0.axis_end[2]),
                                      colormap=self.cmap)[0]
        self.bottom = imgplot

        print("x range=", self.seis_data_0.axis_start[0],
              self.seis_data_0.axis_end[0])
        print("z range=", self.seis_data_0.axis_start[2],
              self.seis_data_0.axis_end[2])
        #print "colormap.shape=',colormap.shape)
        x = linspace(-14, 14, 100)

        y = x**3
        plotdata = ArrayPlotData(x=x, y=y)

        scatter = Plot(plotdata, origin="top left")
        scatter.plot(("x", "y"), type="scatter", color='blue')
        scatter.title = "x**3"
        self.scatter = scatter
        #scatter.origin="top left"
        print("make container")
        container = HPlotContainer(bottomplot)
        print("container.add")
        container.add(scatter)
        #container.spacing = 0

        #        scatter.padding_right = 0

        #        line.padding_left = 0
        #        line.y_axis.orientation = "right"

        self.plot = bottomplot  #container
        # kls karl !! When I change plot = Instance(Plot) and this line to
        # self.plot=container I get no img_plotplot to
        #        self.plot.tools.append(CustomTool(self.plot))

        self.displayParameters = DisplayParameters()

        imgplot.tools.append(CustomTool(self.plot))

    def _update_images(self):
        range = DataRange1D(low=self.seis_data_0.minval,
                            high=self.seis_data_0.maxval)
        print("self.seis_data_0.min/max=", self.seis_data_0.minval,
              self.seis_data_0.maxval)
        self.colormap = self.cmap(range)

        print("self.slice_y=", self.slice_y)
        slicexz = self.seis_data_0.vals[:, self.slice_y, :]
        print("min/max slicexz=", min(slicexz), max(slicexz))
        colorslicexz = (self.colormap.map_screen(slicexz) * 255).astype(uint8)
        # Transposed required because img_plot() expects data in row-major order
        #        self.arrayPlotData.set_data("xz", transpose(colorslicexz,(1,0,2)))
        self.arrayPlotData.set_data("xz", colorslicexz)
        print("colorslicexz.shape=", colorslicexz.shape)
        print("type(colorslicexz)=", type(colorslicexz))
        print("type(colorslicexz[0,0,0])=", type(colorslicexz[0, 0, 0]))
        print("colorslicexz=", colorslicexz)
        print("min(colorslicexz[0,:,:,:]=", min(colorslicexz[:, :, 0]))
        print("min(colorslicexz[1,:,:,:]=", min(colorslicexz[:, :, 1]))
        print("min(colorslicexz[2,:,:,:]=", min(colorslicexz[:, :, 2]))
        print("min(colorslicexz[3,:,:,:]=", min(colorslicexz[:, :, 3]))

    def _marker_size_changed(self):
        self.scatter.marker_size = self.marker_size

    def _color_changed(self):
        self.scatter.marker_size = self.marker_size

    def _display_button_fired(self):
        print("button pushed")
        self.displayParameters.edit_traits()

    def _next_fired(self):
        print("next button pushed")
示例#18
0
class HintonDiagramPlot(PyannoPlotContainer):
    """Defines a Hinton diagram view of a discrete probability distribution.

    A Hinton diagram displays a probability distribution as a series of
    squares, with area proportional to the probability mass of each element.

    The plot updates automatically whenever the attribute `data` is modified.
    """

    #### Traits definition ####################################################

    # data to be displayed
    data = ListFloat

    #### plot-related traits
    plot_data = Instance(ArrayPlotData)
    plot = Any

    @on_trait_change('data', post_init=True)
    def _update_data(self):
        distr_len = len(self.data)
        plot_data = self.plot_data

        # centers of the squares
        centers = [(i, 0.5) for i in xrange(1, distr_len + 1)]

        for idx, center in enumerate(centers):
            # draw square with area proportional to probability mass
            r = np.sqrt(self.data[idx] / (2. * np.pi))
            npoints = n_gon(center=center, r=r, nsides=40)
            nxarray, nyarray = np.transpose(npoints)
            # save in dataarray
            plot_data.set_data('x%d' % idx, nxarray)
            plot_data.set_data('y%d' % idx, nyarray)

    def _plot_data_default(self):
        self.plot_data = ArrayPlotData()
        self._update_data()
        return self.plot_data

    #### Plot definition ######################################################

    def _create_probability_axis(self, plot):
        """Create plot axis for probability values."""
        prob_axis = LabelAxis(plot,
                              orientation='left',
                              positions=[0.5, 0.5 + np.sqrt(0.25) / 2., 1.0],
                              labels=['0', '0.25', '1'])
        prob_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(0.001))
        return prob_axis

    def _plot_default(self):
        distr_len = len(self.data)

        # PolygonPlot holding the circles of the Hinton diagram
        polyplot = Plot(self.plot_data)
        for idx in range(distr_len):
            p = polyplot.plot(('x%d' % idx, 'y%d' % idx),
                              type="polygon",
                              face_color=get_class_color(idx),
                              edge_color='black')

        self._set_title(polyplot)
        self._remove_grid_and_axes(polyplot)

        # create x axis for labels
        axis = self._create_increment_one_axis(polyplot, 1., distr_len,
                                               'bottom')
        self._add_index_axis(polyplot, axis)

        # create y axis for probability density
        #prob_axis = self._create_probability_axis(polyplot)
        #polyplot.value_axis = prob_axis
        #polyplot.underlays.append(prob_axis)

        # tweak some of the plot properties
        range2d = DataRange2D(low=(0.5, 0.), high=(distr_len + 0.5, 1.))
        polyplot.range2d = range2d
        polyplot.aspect_ratio = ((range2d.x_range.high - range2d.x_range.low) /
                                 (range2d.y_range.high - range2d.y_range.low))

        polyplot.border_visible = False
        polyplot.padding = [0, 0, 25, 25]

        # create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(use_backbuffer=True, valign='center')
        container.add(polyplot)
        container.bgcolor = 0xFFFFFF  # light gray: 0xEEEEEE

        self.decorate_plot(container, self.data)
        return container

    #### View definition ######################################################

    resizable_plot_item = Item('plot',
                               editor=ComponentEditor(),
                               resizable=True,
                               show_label=False,
                               width=600,
                               height=400)

    traits_plot_item = Instance(Item)

    def _traits_plot_item_default(self):
        return Item(
            'plot',
            editor=ComponentEditor(),
            resizable=False,
            show_label=False,
            height=-110,
        )
示例#19
0
class ConnectedRange(HasTraits):

    model = Instance(imageModel)

    upper = DelegatesTo('model')
    lower = DelegatesTo('model')
    c = DelegatesTo('model')
    lowerLimit = DelegatesTo('model')
    upperLimit = DelegatesTo('model')

    img = DelegatesTo('model')
    hist = DelegatesTo('model')
    lowerFilt = DelegatesTo('model')
    upperFilt = DelegatesTo('model')
    edges = DelegatesTo('model')
    fill = DelegatesTo('model')
    elevation = DelegatesTo('model')
    markers = DelegatesTo('model')
    segmentation = DelegatesTo('model')

    container01 = Instance(HPlotContainer)
    container02 = Instance(HPlotContainer)

    imgdata = Instance(ArrayPlotData)
    upfilt = Instance(ArrayPlotData)
    lowfilt = Instance(ArrayPlotData)
    edgesPlot = Instance(ArrayPlotData)
    fillPlot = Instance(ArrayPlotData)
    elevPlot = Instance(ArrayPlotData)
    markerPlot = Instance(ArrayPlotData)
    segmentationPlot = Instance(ArrayPlotData)

    traits_view = View(Item('container01',
                            editor=ComponentEditor(),
                            show_label=False),
                       Item('container02',
                            editor=ComponentEditor(),
                            show_label=False),
                       Item('upper',
                            editor=RangeEditor(low=0., high=240.),
                            label="upperbound"),
                       Item('lower',
                            editor=RangeEditor(low=0., high=240.),
                            label="lowerbound"),
                       Item('lowerLimit',
                            editor=RangeEditor(low=0., high=256.),
                            label="lowerLimit"),
                       Item('upperLimit',
                            editor=RangeEditor(low=0., high=256.),
                            label="upperLimit"),
                       Item('c', editor=RangeEditor(low=-5., high=5.)),
                       resizable=True,
                       title="Connected Range")

    def _imgdata_default(self):
        img = self.img
        imgdata = ArrayPlotData(imagedata=img, colormap=gray)
        return imgdata

    def _upfilt_default(self):
        img = self.upperFilt
        imgdata = ArrayPlotData(imagedata=img, colormap=gray)
        return imgdata

    def _lowfilt_default(self):
        img = self.lowerFilt
        imgdata = ArrayPlotData(imagedata=img, colormap=gray)
        return imgdata

    def _edgesPlot_default(self):
        edges = self.edges
        imgdata = ArrayPlotData(imagedata=edges, colormap=gray)
        return imgdata

    def _fillPlot_default(self):
        fill = self.fill
        imgdata = ArrayPlotData(imagedata=fill, colormap=gray)
        return imgdata

    def _elevPlot_default(self):
        elev = self.elevation
        imgdata = ArrayPlotData(imagedata=elev)
        return imgdata

    def _markerPlot_default(self):
        markers = self.markers
        imgdata = ArrayPlotData(imagedata=markers)
        return imgdata

    def _segmentationPlot_default(self):
        segmentation = self.segmentation
        imgdata = ArrayPlotData(imagedata=segmentation)
        return imgdata

    def _container02_default(self):
        # Create the data and the PlotData object
        fillPlot = self.fillPlot
        fill = Plot(fillPlot)
        fill.img_plot("imagedata", colormap=gray)

        elev = Plot(self.elevPlot)
        elev.img_plot("imagedata", colormap=gray)

        marker = Plot(self.markerPlot)
        marker.img_plot("imagedata", colormap=gray)

        segmentation = Plot(self.segmentationPlot)
        segmentation.img_plot("imagedata", colormap=gray)

        return HPlotContainer(fill, elev, marker, segmentation)

    def _container01_default(self):
        # Create the data and the PlotData object

        imgdata = self.imgdata
        upperfilter = self.upfilt
        lowerfilter = self.lowfilt
        edgesPlot = self.edgesPlot
        # Create the scatter plot
        scatter = Plot(imgdata)
        scatter.img_plot("imagedata", colormap=gray)

        # Create the line plot
        line = Plot(upperfilter)
        line.img_plot("imagedata", colormap=gray)

        # Create the other line plot
        line2 = Plot(lowerfilter)
        line2.img_plot("imagedata", colormap=gray)

        #create edges
        edgeplot = Plot(edgesPlot)
        edgeplot.img_plot("imagedata", colormap=gray)

        # Add pan/zoom so we can see they are connected
        scatter.tools.append(PanTool(scatter))
        scatter.tools.append(ZoomTool(scatter))
        line.tools.append(PanTool(line))
        line.tools.append(ZoomTool(line))
        line2.tools.append(PanTool(line))
        line2.tools.append(ZoomTool(line))

        # Set the two plots' ranges to be the same
        #scatter.index_range = line.index_range
        #scatter.value_range = line.value_range
        ##set manually with scatter.value_range.set_bounds(0,1)
        ##or scatter.index_range.set_bounds(0,1)

        # Create a horizontal container and put the two plots inside it
        return HPlotContainer(scatter, line, line2, edgeplot)

    @on_trait_change('img')
    def update_img(self):
        self.imgdata.set_data('imagedata', self.img)

    @on_trait_change('upperFilt')
    def update_upperFilter(self):
        self.upfilt.set_data('imagedata', self.upperFilt)

    @on_trait_change('lowerFilt')
    def update_lowerFilter(self):
        self.lowfilt.set_data('imagedata', self.lowerFilt)

    @on_trait_change('edges')
    def update_edges(self):
        self.edgesPlot.set_data('imagedata', self.edges)

    @on_trait_change('fill')
    def update_fill(self):
        self.fillPlot.set_data('imagedata', self.fill)

    @on_trait_change('elevation')
    def update_elevation(self):
        self.elevPlot.set_data('imagedata', self.elevation)

    @on_trait_change('markers')
    def update_markers(self):
        self.markerPlot.set_data('imagedata', self.markers)

    @on_trait_change('segmentation')
    def update_segmentation(self):
        self.segmentationPlot.set_data('imagedata', self.segmentation)
示例#20
0
    def traits_view(self):
        cali_grp = VGroup(UItem(
            'tray_manager.calibrate',
            enabled_when='stage_manager.stage_map_name',
            editor=ButtonEditor(label_value='tray_manager.calibration_step')),
                          HGroup(
                              Readonly('tray_manager.x', format_str='%0.3f'),
                              Readonly('tray_manager.y', format_str='%0.3f')),
                          Readonly('tray_manager.rotation',
                                   format_str='%0.3f'),
                          Readonly('tray_manager.scale', format_str='%0.4f'),
                          Readonly('tray_manager.error', format_str='%0.2f'),
                          UItem('tray_manager.calibrator',
                                style='custom',
                                editor=InstanceEditor()),
                          CustomLabel('tray_manager.calibration_help',
                                      color='green',
                                      height=75,
                                      width=300),
                          show_border=True,
                          label='Calibration')

        # c_grp = VGroup(HGroup(Item('setpoint'),
        #                       UItem('setpoint_readback')),
        #                UItem('setpoint_readback',
        #                      enabled_when='0',
        #                      editor=RangeEditor(mode='slider',
        #                                         low_name='setpoint_readback_min',
        #                                         high_name='setpoint_readback_max')),
        #
        #                label='Controller', show_border=True)
        c_grp = VGroup(Item('setpoint'),
                       VGroup(UItem('setpoint_readback', editor=LCDEditor())),
                       label='Controller',
                       show_border=True)
        d_grp = VGroup(
            Item('stage_manager.calibrated_position_entry', label='Hole'),
            Item('stage_manager.sample_linear_holder.position',
                 editor=RangeEditor(
                     mode='slider',
                     low_name='stage_manager.sample_linear_holder.min_value',
                     high_name='stage_manager.sample_linear_holder.max_value',
                 )),
            HGroup(
                UItem('pane.dump_sample_button',
                      tooltip='Complete sample dumping procedure'),
                icon_button_editor('pane.funnel_up_button',
                                   'arrow_up',
                                   enabled_when='pane.funnel_up_enabled',
                                   editor_kw={'label': 'Funnel Up'}),
                icon_button_editor('pane.funnel_down_button',
                                   'arrow_down',
                                   enabled_when='pane.funnel_down_enabled',
                                   editor_kw={'label': 'Funnel Down'}),
                spring),
            UItem('dumper_canvas', editor=ComponentEditor()),
            # UItem('pane.lower_funnel_button', enabled_when='stage_manager.funnel.min_limit'),
            # UItem('pane.raise_funnel_button', enabled_when='stage_manager.funnel.max_limit'),
            label='Dumper',
            show_border=True)

        v = View(VGroup(c_grp, HGroup(Tabbed(d_grp, cali_grp))))
        return v
示例#21
0
 def traits_view(self):
     v = View(VGroup(HGroup(Item('irradiation_tray', style='readonly')),
                     UItem('canvas', editor=ComponentEditor())))
     return v
示例#22
0
 def traits_view(self):
     ctrl_grp = VGroup(
         Item('path', show_label=False),
         Item('highlight_bands',
              editor=ListEditor(mutable=False,
                                style='custom',
                                editor=InstanceEditor())))
     v = View(
         ctrl_grp,
         Item('container', show_label=False, editor=ComponentEditor()),
         #
         title='Color Inspector',
         resizable=True,
         height=800,
         width=900)
     return v
     #    def traits_view(self):
     #        lgrp = VGroup(Item('low'),
     #                      Item('low', show_label=False, editor=RangeEditor(mode='slider', low=0, high_name='high')))
     #        hgrp = VGroup(Item('high'),
     #                      Item('high', show_label=False, editor=RangeEditor(mode='slider', low_name='low', high=255)))
     #        savegrp = HGroup(Item('save_button', show_label=False),
     #                         Item('save_mode', show_label=False))
     #        ctrlgrp = VGroup(
     #                         Item('path', show_label=False),
     #                         HGroup(Item('use_threshold'), Item('contrast_equalize'),
     #                                HGroup(Item('contrast_low'), Item('contrast_high'), enabled_when='contrast_equalize'),
     #                                Item('histogram_equalize')
     #                                ),
     #                         HGroup(Item('highlight'), Item('highlight_threshold')),
     #                         HGroup(spring,
     #                                lgrp,
     #                                hgrp,
     #                                VGroup(savegrp,
     #                                       Item('calc_area_value', label='Calc. Area For.',
     #                                                     tooltip='Calculate %area for all pixels with this value'
     #                                                     ),
     #                                       Item('calc_area_threshold', label='Threshold +/- px',
     #                                            tooltip='bandwidth= calc_value-threshold to calc_value+threshold'
     #                                            )
     #
     #                                       )
     #                                ),
     #                         HGroup(spring, Item('area', style='readonly', width= -200)),
     #                         HGroup(
     #                                Item('colormap_name_1', show_label=False,
     #                                      editor=EnumEditor(values=color_map_name_dict.keys())),
     #                                spring,
     #                                Item('colormap_name_2', show_label=False,
     #                                     editor=EnumEditor(values=color_map_name_dict.keys()))),
     #                       )
     #        v = View(ctrlgrp,
     #                 Item('container', show_label=False,
     #                       editor=ComponentEditor()),
     #
     #                 title='Color Inspector',
     #                 resizable=True,
     #                 height=800,
     #                 width=900
     #
     #                 )
     return v
class PlotUI(HasTraits):

    # container for all plots
    container = Instance(HPlotContainer)

    # Plot components within this container:
    polyplot = Instance(ContourPolyPlot)
    lineplot = Instance(ContourLinePlot)
    cross_plot = Instance(Plot)
    cross_plot2 = Instance(Plot)
    colorbar = Instance(ColorBar)

    # plot data
    pd = Instance(ArrayPlotData)

    # view options
    num_levels = Int(15)
    colormap = Enum(colormaps)

    #Traits view definitions:
    traits_view = View(Group(
        UItem('container', editor=ComponentEditor(size=(800, 600)))),
                       resizable=True)

    plot_edit_view = View(Group(Item('num_levels'), Item('colormap')),
                          buttons=["OK", "Cancel"])

    #---------------------------------------------------------------------------
    # Private Traits
    #---------------------------------------------------------------------------

    _image_index = Instance(GridDataSource)
    _image_value = Instance(ImageData)

    _cmap = Trait(default_colormaps.jet, Callable)

    #---------------------------------------------------------------------------
    # Public View interface
    #---------------------------------------------------------------------------

    def __init__(self, *args, **kwargs):
        super(PlotUI, self).__init__(*args, **kwargs)
        # FIXME: 'with' wrapping is temporary fix for infinite range in initial
        # color map, which can cause a distracting warning print. This 'with'
        # wrapping should be unnecessary after fix in color_mapper.py.
        with errstate(invalid='ignore'):
            self.create_plot()

    def create_plot(self):

        # Create the mapper, etc
        self._image_index = GridDataSource(array([]),
                                           array([]),
                                           sort_order=("ascending",
                                                       "ascending"))
        image_index_range = DataRange2D(self._image_index)
        self._image_index.on_trait_change(self._metadata_changed,
                                          "metadata_changed")

        self._image_value = ImageData(data=array([]), value_depth=1)
        image_value_range = DataRange1D(self._image_value)

        # Create the contour plots
        self.polyplot = ContourPolyPlot(index=self._image_index,
                                        value=self._image_value,
                                        index_mapper=GridMapper(range=
                                            image_index_range),
                                        color_mapper=\
                                            self._cmap(image_value_range),
                                        levels=self.num_levels)

        self.lineplot = ContourLinePlot(
            index=self._image_index,
            value=self._image_value,
            index_mapper=GridMapper(range=self.polyplot.index_mapper.range),
            levels=self.num_levels)

        # Add a left axis to the plot
        left = PlotAxis(orientation='left',
                        title="y",
                        mapper=self.polyplot.index_mapper._ymapper,
                        component=self.polyplot)
        self.polyplot.overlays.append(left)

        # Add a bottom axis to the plot
        bottom = PlotAxis(orientation='bottom',
                          title="x",
                          mapper=self.polyplot.index_mapper._xmapper,
                          component=self.polyplot)
        self.polyplot.overlays.append(bottom)

        # Add some tools to the plot
        self.polyplot.tools.append(
            PanTool(self.polyplot, constrain_key="shift"))
        self.polyplot.overlays.append(
            ZoomTool(component=self.polyplot, tool_mode="box",
                     always_on=False))
        self.polyplot.overlays.append(
            LineInspector(component=self.polyplot,
                          axis='index_x',
                          inspect_mode="indexed",
                          write_metadata=True,
                          is_listener=True,
                          color="white"))
        self.polyplot.overlays.append(
            LineInspector(component=self.polyplot,
                          axis='index_y',
                          inspect_mode="indexed",
                          write_metadata=True,
                          color="white",
                          is_listener=True))

        # Add these two plots to one container
        contour_container = OverlayPlotContainer(padding=20,
                                                 use_backbuffer=True,
                                                 unified_draw=True)
        contour_container.add(self.polyplot)
        contour_container.add(self.lineplot)

        # Create a colorbar
        cbar_index_mapper = LinearMapper(range=image_value_range)
        self.colorbar = ColorBar(index_mapper=cbar_index_mapper,
                                 plot=self.polyplot,
                                 padding_top=self.polyplot.padding_top,
                                 padding_bottom=self.polyplot.padding_bottom,
                                 padding_right=40,
                                 resizable='v',
                                 width=30)

        self.pd = ArrayPlotData(line_index=array([]),
                                line_value=array([]),
                                scatter_index=array([]),
                                scatter_value=array([]),
                                scatter_color=array([]))

        self.cross_plot = Plot(self.pd, resizable="h")
        self.cross_plot.height = 100
        self.cross_plot.padding = 20
        self.cross_plot.plot(("line_index", "line_value"), line_style="dot")
        self.cross_plot.plot(
            ("scatter_index", "scatter_value", "scatter_color"),
            type="cmap_scatter",
            name="dot",
            color_mapper=self._cmap(image_value_range),
            marker="circle",
            marker_size=8)

        self.cross_plot.index_range = self.polyplot.index_range.x_range

        self.pd.set_data("line_index2", array([]))
        self.pd.set_data("line_value2", array([]))
        self.pd.set_data("scatter_index2", array([]))
        self.pd.set_data("scatter_value2", array([]))
        self.pd.set_data("scatter_color2", array([]))

        self.cross_plot2 = Plot(self.pd,
                                width=140,
                                orientation="v",
                                resizable="v",
                                padding=20,
                                padding_bottom=160)
        self.cross_plot2.plot(("line_index2", "line_value2"), line_style="dot")
        self.cross_plot2.plot(
            ("scatter_index2", "scatter_value2", "scatter_color2"),
            type="cmap_scatter",
            name="dot",
            color_mapper=self._cmap(image_value_range),
            marker="circle",
            marker_size=8)

        self.cross_plot2.index_range = self.polyplot.index_range.y_range

        # Create a container and add components
        self.container = HPlotContainer(padding=40,
                                        fill_padding=True,
                                        bgcolor="white",
                                        use_backbuffer=False)
        inner_cont = VPlotContainer(padding=0, use_backbuffer=True)
        inner_cont.add(self.cross_plot)
        inner_cont.add(contour_container)
        self.container.add(self.colorbar)
        self.container.add(inner_cont)
        self.container.add(self.cross_plot2)

    def update(self, model):
        self.minz = model.minz
        self.maxz = model.maxz
        self.colorbar.index_mapper.range.low = self.minz
        self.colorbar.index_mapper.range.high = self.maxz
        self._image_index.set_data(model.xs, model.ys)
        self._image_value.data = model.zs
        self.pd.set_data("line_index", model.xs)
        self.pd.set_data("line_index2", model.ys)
        self.container.invalidate_draw()
        self.container.request_redraw()

    #---------------------------------------------------------------------------
    # Event handlers
    #---------------------------------------------------------------------------

    def _metadata_changed(self, old, new):
        """ This function takes out a cross section from the image data, based
        on the line inspector selections, and updates the line and scatter
        plots."""

        self.cross_plot.value_range.low = self.minz
        self.cross_plot.value_range.high = self.maxz
        self.cross_plot2.value_range.low = self.minz
        self.cross_plot2.value_range.high = self.maxz
        if self._image_index.metadata.has_key("selections"):
            x_ndx, y_ndx = self._image_index.metadata["selections"]
            if y_ndx and x_ndx:
                self.pd.set_data("line_value",
                                 self._image_value.data[y_ndx, :])
                self.pd.set_data("line_value2", self._image_value.data[:,
                                                                       x_ndx])
                xdata, ydata = self._image_index.get_data()
                xdata, ydata = xdata.get_data(), ydata.get_data()
                self.pd.set_data("scatter_index", array([xdata[x_ndx]]))
                self.pd.set_data("scatter_index2", array([ydata[y_ndx]]))
                self.pd.set_data("scatter_value",
                                 array([self._image_value.data[y_ndx, x_ndx]]))
                self.pd.set_data("scatter_value2",
                                 array([self._image_value.data[y_ndx, x_ndx]]))
                self.pd.set_data("scatter_color",
                                 array([self._image_value.data[y_ndx, x_ndx]]))
                self.pd.set_data("scatter_color2",
                                 array([self._image_value.data[y_ndx, x_ndx]]))
        else:
            self.pd.set_data("scatter_value", array([]))
            self.pd.set_data("scatter_value2", array([]))
            self.pd.set_data("line_value", array([]))
            self.pd.set_data("line_value2", array([]))

    def _colormap_changed(self):
        self._cmap = default_colormaps.color_map_name_dict[self.colormap]
        if self.polyplot is not None:
            value_range = self.polyplot.color_mapper.range
            self.polyplot.color_mapper = self._cmap(value_range)
            value_range = self.cross_plot.color_mapper.range
            self.cross_plot.color_mapper = self._cmap(value_range)
            # FIXME: change when we decide how best to update plots using
            # the shared colormap in plot object
            self.cross_plot.plots["dot"][0].color_mapper = self._cmap(
                value_range)
            self.cross_plot2.plots["dot"][0].color_mapper = self._cmap(
                value_range)
            self.container.request_redraw()

    def _num_levels_changed(self):
        if self.num_levels > 3:
            self.polyplot.levels = self.num_levels
            self.lineplot.levels = self.num_levels
示例#24
0
class Viewport(Handler):
    ds = Any

    #FIXME there is no reason to have modular viewports anymore since as
    #it turns out the viewport has to be rebuilt in order to update the view.
    #this is something that could be modularly managed.
    #The benefit of changing what now works is however low.  It is basically
    #a very weak form of static type checking, and a way to save a miniscule
    #amount of time and space on managing pointers.

    #by keeping these views on the viewport object itself, we can change
    #the dataset without making traitsui think that the view is inaccessible
    #and it is time to be thrown away immediately upon loading a new dataset
    scene = Instance(MlabSceneModel)
    conn_mat = Instance(Plot)
    circ = Instance(Figure)

    view_type = Enum('dummy', '3D Brain', 'Connection Matrix', 'Circular plot')

    dummy_view = View(
        Item(editor=NullEditor(), height=500, width=500, label='empty'))

    mayavi_view = View(
        Item(name='scene',
             editor=SceneEditor(scene_class=MayaviScene),
             height=500,
             width=500,
             show_label=False,
             resizable=True))

    matrix_view = View(
        Item(name='conn_mat',
             editor=ComponentEditor(),
             height=500,
             width=500,
             show_label=False,
             resizable=True))

    circle_view = View(
        Item(name='circ',
             editor=MPLFigureEditor(),
             height=500,
             width=500,
             show_label=False,
             resizable=True))

    def __init__(self, ds, **kwargs):
        super(Viewport, self).__init__(**kwargs)
        self.ds = ds

        #it is ok to assign the editors while initializing the viewport
        self.scene = ds.dv_3d.scene
        self.conn_mat = ds.dv_mat.conn_mat
        self.circ = ds.dv_circ.circ

    #MPLEditor wants its interactions to be on the model object
    #this is the "fake" model object so we forward them to the real model object
    def circle_click(self, event):
        self.ds.dv_circ.circle_click(event)

    def circle_mouseover(self, event, tooltip):
        self.ds.dv_circ.circle_mouseover(event, tooltip)
示例#25
0
class MyImagePlot(HasTraits):

    # define plot as a trait
    plot = Instance(GridPlotContainer)

    my_position = Tuple(0, 0)
    off_grid = Bool(False)
    my_data_bounds = Range(low=50, high=250)

    # subset of image matrix
    submatrix = Array(shape=(my_data_bounds.value, my_data_bounds.value))

    # histogram and bin edge locations
    hist = Array()
    bin_edges = Array()

    traits_view = View(Item('my_data_bounds'),
                       Item(
                           'plot',
                           editor=ComponentEditor(),
                           width=500,
                           height=500,
                       ),
                       title='Image:',
                       width=800,
                       height=600)

    def __init__(self, image):
        self.im = image
        self.plot_constructors = [
            self.image_histogram_plot_component,
            self.intensity_histogram_plot_component,
        ]
        self.submatrix = self.im[0:self.my_data_bounds, 0:self.my_data_bounds]
        self.hist, self.bin_edges = calculate_intensity_histogram(
            self.submatrix)

    def _plot_default(self):
        return self.grid_plot_component()

    def grid_plot_component(self):
        container = GridPlotContainer(padding=50,
                                      fill_padding=True,
                                      shape=(1, len(self.plot_constructors)),
                                      spacing=(20, 20))

        for plot_constructor in self.plot_constructors:
            plot = plot_constructor()
            container.add(plot)

        return container

    def image_histogram_plot_component(self):
        xs = np.arange(0, len(self.im))
        ys = np.arange(0, len(self.im[0]))

        index = GridDataSource(xdata=xs,
                               ydata=ys,
                               sort_order=('ascending', 'ascending'))

        index_mapper = GridMapper(range=DataRange2D(index))

        color_source = ImageData(data=self.im, value_depth=1)
        reversed_grays = reverse(Greys)
        color_mapper = reversed_grays(DataRange1D(color_source))

        plot = CMapImagePlot(
            index=index,
            index_mapper=index_mapper,
            value=color_source,
            value_mapper=color_mapper,
            orientation='h',
            origin='top left',
        )

        self.data_box_overlay = DataBox(
            component=plot,
            data_position=[0, 0],
            data_bounds=[self.my_data_bounds, self.my_data_bounds],
        )

        move_tool = MoveTool(component=self.data_box_overlay)
        self.data_box_overlay.tools.append(move_tool)

        self.data_box_overlay.on_trait_change(self.update_my_position,
                                              'position')

        #: Add to plot
        plot.overlays.append(self.data_box_overlay)

        return plot

    def intensity_histogram_plot_component(self):

        data = ArrayPlotData(x=self.bin_edges, y=self.hist)

        plot = Plot(data)
        plot.plot(
            ('x', "y"),
            type='bar',
            color='auto',
            bar_width=1,
        )
        # without padding plot just doesn't seem to show up?
        plot.padding = 0

        return plot

    def update_my_position(object, new):
        try:
            object.my_position = object.plot._components[0].map_index(new)
            object.off_grid = False
        except TraitError:
            object.off_grid = True

    def _my_data_bounds_changed(self):
        if not self.off_grid:
            self.data_box_overlay.data_bounds = [
                self.my_data_bounds, self.my_data_bounds
            ]
            self.data_box_overlay._data_position = self.my_position

    def _my_position_changed(self, new):
        self.submatrix = self.im[new[0]:new[0] + self.my_data_bounds,
                                 new[1]:new[1] + self.my_data_bounds]

    def _submatrix_changed(self, new):
        self.hist, self.bin_edges = calculate_intensity_histogram(new)

    def _bin_edges_changed(self):
        self.plot._components[1].data.set_data('x', self.bin_edges)

    def _hist_changed(self):
        self.plot._components[1].data.set_data('y', self.hist)
示例#26
0
class EXDesignReader(HasTraits):
    '''Read the data from the directory

    The design is described in semicolon-separated
    csv file providing the information about
    design parameters.

    Each file has the name n.txt
    '''

    #--------------------------------------------------------------------
    # Specification of the design - factor list, relative paths, etc
    #--------------------------------------------------------------------
    open_exdesign = Button()

    def _open_exdesign_fired(self):
        file_name = open_file(filter=['*.eds'],
                              extensions=[FileInfo(), TextInfo()])
        if file_name != '':
            self.exdesign_spec_file = file_name

    exdesign_spec_file = File

    def _exdesign_spec_file_changed(self):
        f = file(self.exdesign_spec_file)
        str = f.read()
        self.exdesign_spec = eval('ExDesignSpec( %s )' % str)

    exdesign_spec = Instance(ExDesignSpec)

    def _exdesign_spec_default(self):
        return ExDesignSpec()

    @on_trait_change('exdesign_spec')
    def _reset_design_file(self):
        dir = os.path.dirname(self.exdesign_spec_file)
        exdesign_file = self.exdesign_spec.design_file
        self.design_file = os.path.join(dir, exdesign_file)

    exdesign_table_columns = Property(List, depends_on='exdesign_spec+')

    @cached_property
    def _get_exdesign_table_columns(self):
        return [
            ObjectColumn(name=ps[2], editable=False, width=0.15)
            for ps in self.exdesign_spec.factors
        ]

    #--------------------------------------------------------------------
    # file containing the association between the factor combinations
    # and data files having the data
    #--------------------------------------------------------------------
    design_file = File

    def _design_file_changed(self):
        self.exdesign = self._read_exdesign()

    exdesign = List(ExRun)

    def _exdesign_default(self):
        return self._read_exdesign()

    def _read_exdesign(self):
        ''' Read the experiment design. 
        '''
        if exists(self.design_file):
            reader = csv.reader(open(self.design_file, 'r'), delimiter=';')

            data_dir = os.path.join(os.path.dirname(self.design_file),
                                    self.exdesign_spec.data_dir)

            return [ExRun(self, row, data_dir=data_dir) for row in reader]
        else:
            return []

    response_array = Property(Array(float), depends_on='exdesign')

    @cached_property
    def _get_response_array(self):
        '''Get the specified response values
        '''
        return array([[
            e.max_stress, e.strain_at_max_stress, e.max_stiffness,
            e.strain_at_max_stiffness
        ] for e in self.exdesign],
                     dtype='float_')

    selected_exrun = Instance(ExRun)

    def _selected_exrun_default(self):
        if len(self.exdesign) > 0:
            return self.exdesign[0]
        else:
            return None

    last_exrun = Instance(ExRun)

    selected_exruns = List(ExRun)

    #------------------------------------------------------------------
    # Array plotting
    #-------------------------------------------------------------------
    # List of arrays to be plotted
    data = Instance(AbstractPlotData)

    def _data_default(self):
        return ArrayPlotData(x=array([]), y=array([]))

    @on_trait_change('selected_exruns')
    def _rest_last_exrun(self):
        if len(self.selected_exruns) > 0:
            self.last_exrun = self.selected_exruns[-1]

    @on_trait_change('selected_exruns')
    def _reset_data(self):
        '''
        '''
        runs, xlabels, ylabels, xlabels_afit, ylabels_afit, xlins, ylins = self._generate_data_labels(
        )
        for name in list(self.plot.plots.keys()):
            self.plot.delplot(name)

        for idx, exrun in enumerate(self.selected_exruns):
            if xlabels[idx] not in self.plot.datasources:
                self.plot.datasources[xlabels[idx]] = ArrayDataSource(
                    exrun.xdata, sort_order='none')
            if ylabels[idx] not in self.plot.datasources:
                self.plot.datasources[ylabels[idx]] = ArrayDataSource(
                    exrun.ydata, sort_order='none')

            if xlabels_afit[idx] not in self.plot.datasources:
                self.plot.datasources[xlabels_afit[idx]] = ArrayDataSource(
                    exrun.xdata_asc_fit, sort_order='none')

            if ylabels_afit[idx] not in self.plot.datasources:
                self.plot.datasources[ylabels_afit[idx]] = ArrayDataSource(
                    exrun.ydata_asc_fit, sort_order='none')
            xlin, ylin = exrun.get_linear_data()
            if xlins[idx] not in self.plot.datasources:
                self.plot.datasources[xlins[idx]] = ArrayDataSource(
                    xlin, sort_order='none')
            if ylins[idx] not in self.plot.datasources:
                self.plot.datasources[ylins[idx]] = ArrayDataSource(
                    ylin, sort_order='none')

        for run, xlabel, ylabel, xlabel_afit, ylabel_afit, xlin, ylin in zip(
                runs, xlabels, ylabels, xlabels_afit, ylabels_afit, xlins,
                ylins):
            self.plot.plot((xlabel, ylabel), color='brown')
            self.plot.plot((xlabel_afit, ylabel_afit), color='blue')
            self.plot.plot((xlin, ylin), color='red')

    def _generate_data_labels(self):
        ''' Generate the labels consisting of the axis and run-number.
        '''
        return (
            [e.std_num for e in self.selected_exruns],
            ['x-%d' % e.std_num for e in self.selected_exruns],
            ['y-%d' % e.std_num for e in self.selected_exruns],
            ['x-%d-fitted' % e.std_num for e in self.selected_exruns],
            ['y-%d-fitted' % e.std_num for e in self.selected_exruns],
            ['x-%d-lin' % e.std_num for e in self.selected_exruns],
            ['y-%d-lin' % e.std_num for e in self.selected_exruns],
        )

    plot = Instance(Plot)

    def _plot_default(self):
        p = Plot()
        p.tools.append(PanTool(p))
        p.overlays.append(ZoomTool(p))
        return p

    view_traits = View(HSplit(
        VGroup(
            Item('open_exdesign', style='simple'),
            Item('exdesign',
                 editor=exrun_table_editor,
                 show_label=False,
                 style='custom')),
        VGroup(
            Item('last_exrun@', show_label=False),
            Item('plot',
                 editor=ComponentEditor(),
                 show_label=False,
                 resizable=True),
        ),
    ),
                       resizable=True,
                       buttons=[OKButton, CancelButton],
                       height=1.,
                       width=1.)
示例#27
0
             format_str="%5.3f",
             tooltip=
             "Pulse Response Zero Forcing approximation error.",
             style="readonly",
         ),
         label="Tuning Options",
         show_border=True,
     ),
     springy=False,
 ),
 Item(
     label=
     "Note: Only CTLE boost will be optimized; please, set peak frequency, bandwidth, and mode appropriately.",
 ),
 Item("plot_h_tune",
      editor=ComponentEditor(),
      show_label=False,
      springy=True),
 HGroup(
     Item(
         "btn_rst_eq",
         show_label=False,
         tooltip="Reset all values to those on the 'Config.' tab."),
     Item("btn_save_eq",
          show_label=False,
          tooltip="Store all values to 'Config.' tab."),
     Item("btn_opt_tx",
          show_label=False,
          tooltip="Run Tx tap weight optimization."),
     Item("btn_opt_rx",
          show_label=False,
示例#28
0
class CursorTest(HasTraits):
    plot = Instance(HPlotContainer)
    cursor1 = Instance(BaseCursorTool)
    cursor2 = Instance(BaseCursorTool)

    cursor1pos = DelegatesTo('cursor1', prefix='current_position')
    cursor2pos = DelegatesTo('cursor2', prefix='current_position')

    def __init__(self):
        #The delegates views don't work unless we caller the superclass __init__
        super(CursorTest, self).__init__()

        container = HPlotContainer(padding=0, spacing=20)
        self.plot = container
        #a subcontainer for the first plot.
        #I'm not sure why this is required. Without it, the layout doesn't work right.
        subcontainer = OverlayPlotContainer(padding=40)
        container.add(subcontainer)

        #make some data
        index = numpy.linspace(-10,10,512)
        value = numpy.sin(index)

        #create a LinePlot instance and add it to the subcontainer
        line = create_line_plot([index, value], add_grid=True,
                                add_axis=True, index_sort='ascending',
                                orientation = 'h')
        subcontainer.add(line)

        #here's our first cursor.
        csr = CursorTool(line,
                        drag_button="left",
                        color='blue')
        self.cursor1 = csr
        #and set it's initial position (in data-space units)
        csr.current_position = 0.0, 0.0

        #this is a rendered component so it goes in the overlays list
        line.overlays.append(csr)

        #some other standard tools
        line.tools.append(PanTool(line, drag_button="right"))
        line.overlays.append(ZoomTool(line))

        #make some 2D data for a colourmap plot
        xy_range = (-5, 5)
        x = numpy.linspace(xy_range[0], xy_range[1] ,100)
        y = numpy.linspace(xy_range[0], xy_range[1] ,100)
        X,Y = numpy.meshgrid(x, y)
        Z = numpy.sin(X)*numpy.arctan2(Y,X)

        #easiest way to get a CMapImagePlot is to use the Plot class
        ds = ArrayPlotData()
        ds.set_data('img', Z)

        img = Plot(ds, padding=40)
        cmapImgPlot = img.img_plot("img",
                     xbounds = xy_range,
                     ybounds = xy_range,
                     colormap = viridis)[0]

        container.add(img)

        #now make another cursor
        csr2 = CursorTool(cmapImgPlot,
                           drag_button='left',
                           color='white',
                           line_width=2.0
                           )
        self.cursor2 = csr2

        csr2.current_position = 1.0, 1.5

        cmapImgPlot.overlays.append(csr2)

        #add some standard tools. Note, I'm assigning the PanTool to the
        #right mouse-button to avoid conflicting with the cursors
        cmapImgPlot.tools.append(PanTool(cmapImgPlot, drag_button="right"))
        cmapImgPlot.overlays.append(ZoomTool(cmapImgPlot))


    traits_view = View(VGroup(
                            HGroup(Item('plot',
                                        editor=ComponentEditor(),
                                        resizable=True, springy=True,
                                        show_label=False),
                                        springy=True),
                            HGroup(Item('cursor1pos', width=300),
                                   Item('cursor2pos', width=300))),
                        title="Cursor Tool Demo",
                        resizable=True,
                        width=800,
                        height=420)
示例#29
0
class WorldMapPlot(HasTraits):

    ### Public Traits ##########################################################

    # The plot which will be displayed
    plot = Instance(Plot)

    # The URL which points to the world map image to be downloaded
    image_url = Str(
        "http://eoimages.gsfc.nasa.gov/ve//2433/land_shallow_topo_2048.jpg")

    ### Private Traits #########################################################

    # The path to where the image exists on the filesystem
    image_path = Str()

    # The view
    traits_view = View(Item('plot',
                            editor=ComponentEditor(),
                            width=800,
                            height=400,
                            show_label=False),
                       resizable=True)

    #---------------------------------------------------------------------------
    # Public interface
    #---------------------------------------------------------------------------

    def __init__(self, **kw):
        super(WorldMapPlot, self).__init__(**kw)

        self._download_map_image()
        image = ImageData.fromfile(self.image_path)

        # For now, the locations are hardcoded, though this can be changed
        # eassily to take command line args, read from a file, or by other
        # means
        austin_loc = (30.16, -97.44)

        locations_x = numpy.array([austin_loc[1]])
        locations_y = numpy.array([austin_loc[0]])

        # transform each of the locations to the image data space, including
        # moving the origin from bottom left to top left
        locations_x = (locations_x + 180) * image.data.shape[1] / 360
        locations_y = (locations_y * -1 + 90) * image.data.shape[0] / 180

        # Create the plott data, adding the image and the locations
        plot_data = ArrayPlotData()
        plot_data.set_data("imagedata", image._data)
        plot_data.set_data("locations_x", locations_x)
        plot_data.set_data("locations_y", locations_y)

        # Create the plot with the origin as top left, which matches
        # how the image data is aligned
        self.plot = Plot(plot_data, default_origin="top left")
        self.plot.img_plot('imagedata')

        # Plot the locations as a scatter plot to be overlayed on top
        # of the map
        loc_plot = self.plot.plot(('locations_x', 'locations_y'),
                                  type='scatter',
                                  size=3,
                                  color='yellow',
                                  marker='dot')[0]

        loc_plot.x_mapper.range.high = image.data.shape[1]
        loc_plot.x_mapper.range.low = 0
        loc_plot.y_mapper.range.high = image.data.shape[0]
        loc_plot.y_mapper.range.low = -0

        # set up any tools, in this case just the zoom tool
        zoom = ZoomTool(component=self.plot, tool_mode="box", always_on=False)
        self.plot.overlays.append(zoom)

    #---------------------------------------------------------------------------
    # Protected interface
    #---------------------------------------------------------------------------

    def _download_map_image(self):
        """ Downloads a map from the image_url attribute. This is done
            primarily to keep the redistributable Chaco package as small
            as possible
        """
        example_dir = os.path.dirname(__file__)
        self.image_path = os.path.join(example_dir, 'data',
                                       os.path.split(self.image_url)[1])

        if not os.path.exists(self.image_path):
            print "Downloading map image"
            urllib.urlretrieve(self.image_url, self.image_path)
示例#30
0
class ImagePlotInspector(traits.HasTraits):
    #Traits view definitions:
    plotGroup = traitsui.Group(
        traitsui.Item('container',
                      editor=ComponentEditor(size=(800, 600)),
                      show_label=False))
    #---------------------------------------------------------------------------
    # Private Traits
    #---------------------------------------------------------------------------
    _image_index = traits.Instance(chaco.GridDataSource)
    _image_value = traits.Instance(chaco.ImageData)
    _cmap = traits.Trait(colormaps.jet, traits.Callable)

    def create_plot(self):

        # Create the mapper, etc
        self._image_index = chaco.GridDataSource(scipy.array([]),
                                                 scipy.array([]),
                                                 sort_order=("ascending",
                                                             "ascending"))
        image_index_range = chaco.DataRange2D(self._image_index)
        self._image_index.on_trait_change(self._metadata_changed,
                                          "metadata_changed")

        self._image_value = chaco.ImageData(data=scipy.array([]),
                                            value_depth=1)

        image_value_range = chaco.DataRange1D(self._image_value)

        # Create the contour plots
        #self.polyplot = ContourPolyPlot(index=self._image_index,
        self.polyplot = chaco.CMapImagePlot(
            index=self._image_index,
            value=self._image_value,
            index_mapper=chaco.GridMapper(range=image_index_range),
            color_mapper=self._cmap(image_value_range))

        # Add a left axis to the plot
        left = chaco.PlotAxis(orientation='left',
                              title="y",
                              mapper=self.polyplot.index_mapper._ymapper,
                              component=self.polyplot)
        self.polyplot.overlays.append(left)

        # Add a bottom axis to the plot
        bottom = chaco.PlotAxis(orientation='bottom',
                                title="x",
                                mapper=self.polyplot.index_mapper._xmapper,
                                component=self.polyplot)
        self.polyplot.overlays.append(bottom)

        # Add some tools to the plot
        self.polyplot.tools.append(
            tools.PanTool(self.polyplot,
                          constrain_key="shift",
                          drag_button="middle"))

        self.polyplot.overlays.append(
            tools.ZoomTool(component=self.polyplot,
                           tool_mode="box",
                           always_on=False))

        self.lineInspectorX = clickableLineInspector.ClickableLineInspector(
            component=self.polyplot,
            axis='index_x',
            inspect_mode="indexed",
            write_metadata=True,
            is_listener=False,
            color="white")

        self.lineInspectorY = clickableLineInspector.ClickableLineInspector(
            component=self.polyplot,
            axis='index_y',
            inspect_mode="indexed",
            write_metadata=True,
            color="white",
            is_listener=False)

        self.polyplot.overlays.append(self.lineInspectorX)
        self.polyplot.overlays.append(self.lineInspectorY)

        #        self.boxSelection2D = plotObjects.boxSelection2D.BoxSelection2D(component=self.polyplot)
        #        self.polyplot.overlays.append(self.boxSelection2D)

        # Add these two plots to one container
        self.centralContainer = chaco.OverlayPlotContainer(padding=0,
                                                           use_backbuffer=True,
                                                           unified_draw=True)
        self.centralContainer.add(self.polyplot)

        # Create a colorbar
        cbar_index_mapper = chaco.LinearMapper(range=image_value_range)
        self.colorbar = chaco.ColorBar(
            index_mapper=cbar_index_mapper,
            plot=self.polyplot,
            padding_top=self.polyplot.padding_top,
            padding_bottom=self.polyplot.padding_bottom,
            padding_right=40,
            resizable='v',
            width=30)

        self.plotData = chaco.ArrayPlotData(
            line_indexHorizontal=scipy.array([]),
            line_valueHorizontal=scipy.array([]),
            scatter_indexHorizontal=scipy.array([]),
            scatter_valueHorizontal=scipy.array([]),
            scatter_colorHorizontal=scipy.array([]),
            fitLine_indexHorizontal=scipy.array([]),
            fitLine_valueHorizontal=scipy.array([]))

        self.crossPlotHorizontal = chaco.Plot(self.plotData, resizable="h")
        self.crossPlotHorizontal.height = 100
        self.crossPlotHorizontal.padding = 20
        self.crossPlotHorizontal.plot(
            ("line_indexHorizontal", "line_valueHorizontal"), line_style="dot")
        self.crossPlotHorizontal.plot(
            ("scatter_indexHorizontal", "scatter_valueHorizontal",
             "scatter_colorHorizontal"),
            type="cmap_scatter",
            name="dot",
            color_mapper=self._cmap(image_value_range),
            marker="circle",
            marker_size=4)

        self.crossPlotHorizontal.index_range = self.polyplot.index_range.x_range

        self.plotData.set_data("line_indexVertical", scipy.array([]))
        self.plotData.set_data("line_valueVertical", scipy.array([]))
        self.plotData.set_data("scatter_indexVertical", scipy.array([]))
        self.plotData.set_data("scatter_valueVertical", scipy.array([]))
        self.plotData.set_data("scatter_colorVertical", scipy.array([]))
        self.plotData.set_data("fitLine_indexVertical", scipy.array([]))
        self.plotData.set_data("fitLine_valueVertical", scipy.array([]))

        self.crossPlotVertical = chaco.Plot(self.plotData,
                                            width=140,
                                            orientation="v",
                                            resizable="v",
                                            padding=20,
                                            padding_bottom=160)
        self.crossPlotVertical.plot(
            ("line_indexVertical", "line_valueVertical"), line_style="dot")

        self.crossPlotVertical.plot(
            ("scatter_indexVertical", "scatter_valueVertical",
             "scatter_colorVertical"),
            type="cmap_scatter",
            name="dot",
            color_mapper=self._cmap(image_value_range),
            marker="circle",
            marker_size=4)

        self.crossPlotVertical.index_range = self.polyplot.index_range.y_range

        # Create a container and add components
        self.container = chaco.HPlotContainer(padding=40,
                                              fill_padding=True,
                                              bgcolor="white",
                                              use_backbuffer=False)

        inner_cont = chaco.VPlotContainer(padding=40, use_backbuffer=True)
        inner_cont.add(self.crossPlotHorizontal)
        inner_cont.add(self.centralContainer)
        self.container.add(self.colorbar)
        self.container.add(inner_cont)
        self.container.add(self.crossPlotVertical)

    def update(self, indexData, imageData):
        logger.info("updating plot")
        if self.autoRangeColor:
            self.colorbar.index_mapper.range.low = model.minZ
            self.colorbar.index_mapper.range.high = model.maxZ
        self._image_index.set_data(model.xs, model.ys)
        self._image_value.data = model.zs
        self.plotData.set_data("line_indexHorizontal", model.xs)
        self.plotData.set_data("line_indexVertical", model.ys)
        self.updatePlotLimits()
        self._image_index.metadata_changed = True
        self.container.invalidate_draw()
        self.container.request_redraw()

    def _metadata_changed(self, old, new):
        """ This function takes out a cross section from the image data, based
        on the line inspector selections, and updates the line and scatter
        plots."""
        if self.horizontalAutoRange:
            self.crossPlotHorizontal.value_range.low = self.model.minZ
            self.crossPlotHorizontal.value_range.high = self.model.maxZ
        if self.verticalAutoRange:
            self.crossPlotVertical.value_range.low = self.model.minZ
            self.crossPlotVertical.value_range.high = self.model.maxZ
        if self._image_index.metadata.has_key("selections"):
            selections = self._image_index.metadata["selections"]
            if not selections:  #selections is empty list
                return  #don't need to do update lines as no mouse over screen. This happens at beginning of script
            x_ndx, y_ndx = selections
            if y_ndx and x_ndx:
                self.plotData.set_data("line_valueHorizontal",
                                       self._image_value.data[y_ndx, :])
                self.plotData.set_data("line_valueVertical",
                                       self._image_value.data[:, x_ndx])
                xdata, ydata = self._image_index.get_data()
                xdata, ydata = xdata.get_data(), ydata.get_data()
                self.plotData.set_data("scatter_indexHorizontal",
                                       scipy.array([xdata[x_ndx]]))
                self.plotData.set_data("scatter_indexVertical",
                                       scipy.array([ydata[y_ndx]]))
                self.plotData.set_data(
                    "scatter_valueHorizontal",
                    scipy.array([self._image_value.data[y_ndx, x_ndx]]))
                self.plotData.set_data(
                    "scatter_valueVertical",
                    scipy.array([self._image_value.data[y_ndx, x_ndx]]))
                self.plotData.set_data(
                    "scatter_colorHorizontal",
                    scipy.array([self._image_value.data[y_ndx, x_ndx]]))
                self.plotData.set_data(
                    "scatter_colorVertical",
                    scipy.array([self._image_value.data[y_ndx, x_ndx]]))
                if self.drawFitBool:
                    self.plotData.set_data("fitLine_valueHorizontal",
                                           self._fit_value.data[y_ndx, :])
                    self.plotData.set_data("fitLine_valueVertical",
                                           self._fit_value.data[:, x_ndx])
        else:
            self.plotData.set_data("scatter_valueHorizontal", scipy.array([]))
            self.plotData.set_data("scatter_valueVertical", scipy.array([]))
            self.plotData.set_data("line_valueHorizontal", scipy.array([]))
            self.plotData.set_data("line_valueVertical", scipy.array([]))
            self.plotData.set_data("fitLine_valueHorizontal", scipy.array([]))
            self.plotData.set_data("fitLine_valueVertical", scipy.array([]))

    def _colormap_changed(self):
        self._cmap = colormaps.color_map_name_dict[self.colormap]
        if hasattr(self, "polyplot"):
            value_range = self.polyplot.color_mapper.range
            self.polyplot.color_mapper = self._cmap(value_range)
            value_range = self.crossPlotHorizontal.color_mapper.range
            self.crossPlotHorizontal.color_mapper = self._cmap(value_range)
            # FIXME: change when we decide how best to update plots using
            # the shared colormap in plot object
            self.crossPlotHorizontal.plots["dot"][0].color_mapper = self._cmap(
                value_range)
            self.crossPlotVertical.plots["dot"][0].color_mapper = self._cmap(
                value_range)
            self.container.request_redraw()

    def _colorMapRangeLow_changed(self):
        self.colorbar.index_mapper.range.low = self.colorMapRangeLow

    def _colorMapRangeHigh_changed(self):
        self.colorbar.index_mapper.range.high = self.colorMapRangeHigh

    def _horizontalLowerLimit_changed(self):
        self.crossPlotHorizontal.value_range.low = self.horizontalLowerLimit

    def _horizontalUpperLimit_changed(self):
        self.crossPlotHorizontal.value_range.high = self.horizontalUpperLimit

    def _verticalLowerLimit_changed(self):
        self.crossPlotVertical.value_range.low = self.verticalLowerLimit

    def _verticalUpperLimit_changed(self):
        self.crossPlotVertical.value_range.high = self.verticalUpperLimit

    def _autoRange_changed(self):
        if self.autoRange:
            self.colorbar.index_mapper.range.low = self.minz
            self.colorbar.index_mapper.range.high = self.maxz

    def _num_levels_changed(self):
        if self.num_levels > 3:
            self.polyplot.levels = self.num_levels
            self.lineplot.levels = self.num_levels

    def _colorMapRangeLow_default(self):
        logger.debug("setting color map rangle low default")
        return self.model.minZ

    def _colorMapRangeHigh_default(self):
        return self.model.maxZ

    def _horizontalLowerLimit_default(self):
        return self.model.minZ

    def _horizontalUpperLimit_default(self):
        return self.model.maxZ

    def _verticalLowerLimit_default(self):
        return self.model.minZ

    def _verticalUpperLimit_default(self):
        return self.model.maxZ