use_gpu = torch.cuda.is_available() if use_gpu: torch.cuda.set_device(gpu_to_use) if not os.path.isdir(output_dir): os.mkdir(output_dir) save_params = (os.path.join(output_dir, model_name), os.path.join(output_dir, log_name)) rnn = EncoderDecoder(hidden_dim, otu_handler, num_lstms, use_gpu, LSTM_in_size=num_strains, use_attention=use_attention) rnn.do_training(inp_slice_len, target_slice_len, batch_size, num_epochs, learning_rate, samples_per_epoch, teacher_force_frac, weight_decay, save_params=save_params, use_early_stopping=use_early_stopping, early_stopping_patience=early_stopping_patience, inp_slice_incr_frequency=inp_slice_incr_frequency, target_slice_incr_frequency=target_slice_incr_frequency)
"--vocab", type=str, help="The file with the vocab characters.") args = parser.parse_args() input_dir = args.data vocab_file = args.vocab files = [ os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.csv') ] TH = TweetHandler(files, vocab_file) TH.set_train_split() TH.remove_urls() if not os.path.isdir(output_dir): os.mkdir(output_dir) save_params = (os.path.join(output_dir, model_name), os.path.join(output_dir, log_name)) enc = EncoderDecoder(hidden_dim, TH, num_lstms) enc.do_training(seq_len, batch_size, num_epochs, learning_rate, samples_per_epoch, teacher_force_frac, slice_incr_frequency=slice_incr_frequency, save_params=save_params)