示例#1
0
class MarkovAgent:
    def __init__(self, observations):
        # encode observation data as int values
        self.state_action_encoder = StateActionEncoder(observations)
        # encoding json coded data -> int
        self.state_action_encoder.observations_to_int()
        dimensions = self.state_action_encoder.parse_dimensions()
        print dimensions

        # create reward, transition, and policy parsers
        self.reward_parser = RewardParser(observations, dimensions)
        self.transition_parser = TransitionParser(observations, dimensions)
        self.policy_parser = PolicyParser(dimensions)

    def learn(self):
        # calculating average rewards of each state
        # average of each state = total rewards of each state / total visits of each state
        R = self.reward_parser.rewards()
        # calculating the probability of each state->action
        # probablities of each state->action = transition counts of each state->action / total transitions
        P = self.transition_parser.transition_probabilities()

        # learn int-encoded policy and convert to readable dictionary
        encoded_policy = self.policy_parser.policy(P, R)
        self.policy = self.state_action_encoder.parse_encoded_policy(
            encoded_policy)
示例#2
0
    def __init__(self, observations):
        # encode observation data as int values
        self.state_action_encoder = StateActionEncoder(observations)
        self.state_action_encoder.observations_to_int()
        dimensions = self.state_action_encoder.parse_dimensions()

        # create reward, transition, and policy parsers
        self.reward_parser = RewardParser(observations, dimensions)
        self.transition_parser = TransitionParser(observations, dimensions)
        self.policy_parser = PolicyParser(dimensions)
示例#3
0
  def __init__(self, observations):
    # encode observation data as int values
    self.state_action_encoder = StateActionEncoder(observations)
    self.state_action_encoder.observations_to_int()
    dimensions = self.state_action_encoder.parse_dimensions()

    # create reward, transition, and policy parsers
    self.reward_parser = RewardParser(observations, dimensions)
    self.transition_parser = TransitionParser(observations, dimensions)
    self.policy_parser = PolicyParser(dimensions)
示例#4
0
class MarkovAgent:
  def __init__(self, observations):
    # encode observation data as int values
    self.state_action_encoder = StateActionEncoder(observations)
    self.state_action_encoder.observations_to_int()
    dimensions = self.state_action_encoder.parse_dimensions()

    # create reward, transition, and policy parsers
    self.reward_parser = RewardParser(observations, dimensions)
    self.transition_parser = TransitionParser(observations, dimensions)
    self.policy_parser = PolicyParser(dimensions)

  def learn(self):
    R = self.reward_parser.rewards()
    P = self.transition_parser.transition_probabilities()

    # learn int-encoded policy and convert to readable dictionary
    encoded_policy = self.policy_parser.policy(P, R)
    self.policy = self.state_action_encoder.parse_encoded_policy(encoded_policy)
示例#5
0
class MarkovAgent:
    def __init__(self, observations):
        # encode observation data as int values
        self.state_action_encoder = StateActionEncoder(observations)
        self.state_action_encoder.observations_to_int()
        dimensions = self.state_action_encoder.parse_dimensions()

        # create reward, transition, and policy parsers
        self.reward_parser = RewardParser(observations, dimensions)
        self.transition_parser = TransitionParser(observations, dimensions)
        self.policy_parser = PolicyParser(dimensions)

    def learn(self):
        R = self.reward_parser.rewards()
        P = self.transition_parser.transition_probabilities()

        # learn int-encoded policy and convert to readable dictionary
        encoded_policy = self.policy_parser.policy(P, R)
        self.policy = self.state_action_encoder.parse_encoded_policy(
            encoded_policy)