示例#1
0
文件: gui.py 项目: dcfidalgo/enrico
    def __init__(self,infile):
        self.infile = infile
        try :
            self.config = get_config(infile)
        except :
            config = ConfigObj(indent_type='\t')
            config['out'] = os.getcwd()
            self.config = get_config(config) 
            
        try :
            ftmp=open(self.config['file']['xml'],'r')
            ftmp.close()
        except :
            os.system('touch '+self.config['file']['xml'])

        self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
        self.window.connect("delete_event", self.delete)
        self.window.set_border_width(10)

        table = gtk.Table(3,6,False)
        self.window.add(table)

        self.notebloc = gtk.Notebook()
        self.notebloc.set_tab_pos(gtk.POS_LEFT)
        table.attach(self.notebloc, 0,6,0,1)
        self.notebloc.show()
        self._addMainOption()
        self._addFiles()
        self._addTargetSpace()
        self._addAnalysis()
        self._addEnergyTime()
        self._addSpectrum()
        self._addUL()
        self._addLC()
#        self._addFoldedLC()
        self._addAppFoldedLC()
#        self._addEbin()
        self._addTSMap()
        self._addfindsrcsrcprob()
        self._addPlot()

        self.notebloc.set_current_page(0)

        ReloadButton = gtk.Button("Reload conf file")
        ReloadButton.connect("clicked", self.reload, "")
        table.attach(ReloadButton, 1,2,1,2)
        ReloadButton.show()

        SaveButton = gtk.Button("Save file")
        SaveButton.connect("clicked", self.save, "")
        table.attach(SaveButton, 3,4,1,2)
        SaveButton.show()

        CloseButton = gtk.Button("Close")
        CloseButton.connect("clicked", self.delete)
        table.attach(CloseButton, 4,5,1,2)
        CloseButton.show()

        table.show()
        self.window.show()
示例#2
0
def run(infile):
    from enrico import utils
    from enrico import energybin
    from enrico.config import get_config
    
    """Run an entire Fermi analysis (spectrum) by reading a config file"""
    config = get_config(infile)
    folder = config['out']
    utils.create_dir(folder)

    FitRunner,Fit = GenAnalysisObjects(config)
    # create all the fit files and run gtlike
    FitRunner.PerformFit(Fit)

    Result = FitRunner.GetAndPrintResults(Fit)#Get and dump the target specific results
    utils.DumpResult(Result, config)

    #plot the SED and model map if possible and asked
    if config['Spectrum']['ResultPlots'] == 'yes' :
        from enrico.constants import SpectrumPath
        utils.create_dir("%s/%s/" %(config['out'],SpectrumPath))
        if float(config['UpperLimit']['TSlimit']) < Fit.Ts(config['target']['name']):
            FitRunner.ComputeSED(Fit)
        outXml = utils._dump_xml(config)
        if config['Spectrum']['SummedLike'] != 'yes': # the possiblity of making the model map is checked inside the function
            FitRunner.ModelMap(outXml)

    #  Make energy bins by running a *new* analysis
    Nbin = config['Ebin']['NumEnergyBins']
    energybin.RunEbin(folder,Nbin,Fit,FitRunner)
   
    del(Result)
    del(FitRunner)
示例#3
0
def run(infile):
    """Run an entire Fermi analysis (spectrum) by reading a config file"""
    config = get_config(infile)
    folder = config['out']
    os.system('mkdir -p ' + folder)

    FitRunner,Fit = GenAnalysisObjects(config)
    # create all the fit files and run gtlike
    FitRunner.PerformFit(Fit)

    Result = FitRunner.GetAndPrintResults(Fit)#Get and dump the target specific results
    if config['verbose'] == 'yes' :
        utils.GetFluxes(Fit,FitRunner.obs.Emin,FitRunner.obs.Emax) #print the flux of all the sources

    utils.DumpResult(Result, config)

    #plot the SED and model map if possible and asked
    if config['Spectrum']['ResultPlots'] == 'yes' :
        from enrico.constants import SpectrumPath
    	os.system("mkdir -p "+config['out'] + '/'+SpectrumPath+'/')
        if float(config['UpperLimit']['TSlimit']) < Fit.Ts(config['target']['name']):
            FitRunner.ComputeSED(Fit)
        outXml = utils._dump_xml(config)
        if config['Spectrum']['SummedLike'] != 'yes': # the possiblity of making the model map is checked inside the function
            FitRunner.ModelMap(outXml)

    #  Make energy bins by running a *new* analysis
    Nbin = config['Ebin']['NumEnergyBins']
    energybin.RunEbin(folder,Nbin,Fit,FitRunner)
示例#4
0
def run(infile):
    """Run an entire Fermi analysis (spectrum) by reading a config file"""
    config = get_config(infile)
    folder = config['out']
    os.system('mkdir -p ' + folder)

    FitRunner, Fit = GenAnalysisObjects(config)
    # create all the fit files and run gtlike
    FitRunner.PerformFit(Fit)

    Result = FitRunner.GetAndPrintResults(
        Fit)  #Get and dump the target specific results
    if config['verbose'] == 'yes':
        utils.GetFluxes(Fit, FitRunner.obs.Emin,
                        FitRunner.obs.Emax)  #print the flux of all the sources

    utils.DumpResult(Result, config)

    #plot the SED and model map if possible and asked
    if config['Spectrum']['ResultPlots'] == 'yes':
        from enrico.constants import SpectrumPath
        os.system("mkdir -p " + config['out'] + '/' + SpectrumPath + '/')
        if float(config['UpperLimit']['TSlimit']) < Fit.Ts(
                config['target']['name']):
            FitRunner.ComputeSED(Fit)
        outXml = utils._dump_xml(config)
        if config['Spectrum'][
                'SummedLike'] != 'yes':  # the possiblity of making the model map is checked inside the function
            FitRunner.ModelMap(outXml)

    #  Make energy bins by running a *new* analysis
    Nbin = config['Ebin']['NumEnergyBins']
    energybin.RunEbin(folder, Nbin, Fit, FitRunner)
示例#5
0
def run(infile):
    from enrico import utils
    from enrico import energybin
    from enrico.config import get_config
    from enrico import Loggin
    mes = Loggin.Message()

    """Run an entire Fermi analysis (spectrum) by reading a config file"""
    config = get_config(infile)
    folder = config['out']
    utils.create_dir(folder)

    FitRunner,Fit = GenAnalysisObjects(config)
    # create all the fit files and run gtlike
    FitRunner.PerformFit(Fit)

    #plot the SED and model map if possible and asked
    if float(config['UpperLimit']['TSlimit']) < Fit.Ts(config['target']['name']):
        if config['Spectrum']['ResultPlots'] == 'yes':
            from enrico.constants import SpectrumPath
            utils.create_dir("%s/%s/" %(config['out'],SpectrumPath))
            sedresult = FitRunner.ComputeSED(Fit,dump=True)
        else:
            sedresult = FitRunner.ComputeSED(Fit,dump=False)
    
        # Update the energy scale to decorrelation energy
        mes.info('Setting the decorrelation energy as new Scale for the spectral parameters')
        spectrum = Fit[FitRunner.obs.srcname].funcs['Spectrum']
        modeltype = spectrum.genericName()
        if Fit.model.srcs[FitRunner.obs.srcname].spectrum().genericName()=="PowerLaw":
            varscale = "Scale"
        if Fit.model.srcs[FitRunner.obs.srcname].spectrum().genericName()=="PowerLaw2":
            varscale = None
        elif Fit.model.srcs[FitRunner.obs.srcname].spectrum().genericName()=="PLSuperExpCutoff":
            varscale = "Scale"
        elif Fit.model.srcs[FitRunner.obs.srcname].spectrum().genericName()=="LogParabola":
            varscale = "Eb"
        elif Fit.model.srcs[FitRunner.obs.srcname].spectrum().genericName()=="BrokenPowerLaw":
            varscale = "Eb"
        
        if varscale is not None:
            spectrum.getParam(varscale).setValue(sedresult.decE)
            FitRunner.PerformFit(Fit)

    if config['Spectrum']['ResultPlots'] == 'yes' :
        outXml = utils._dump_xml(config)
        if config['Spectrum']['SummedLike'] != 'yes':
            # the possiblity of making the model map is checked inside the function
            FitRunner.ModelMap(outXml)
    
    #Get and dump the target specific results
    Result = FitRunner.GetAndPrintResults(Fit)
    utils.DumpResult(Result, config)

    #  Make energy bins by running a *new* analysis
    Nbin = config['Ebin']['NumEnergyBins']
    energybin.RunEbin(folder,Nbin,Fit,FitRunner)

    del(Result)
    del(FitRunner)
示例#6
0
  def run_analysis(self):
    import shutil
    from enrico import environ
    from enrico.config import get_config
    from enrico.appertureLC import AppLC
    from enrico.submit import call
    from enrico.constants import AppLCPath
    infile = self.configfile
    config = get_config(infile)

    self.remove_prev_dir()

    verbose("-> Running the analysis for %s" %(analysis.name))

    # We will always try to run it in parallel,
    # either with python multiproc or with external torque pbs.
    if config['Submit'] == 'no':
      global fqueue
      fqueue.put(infile)
    else:
      enricodir = environ.DIRS.get('ENRICO_DIR')
      fermidir = environ.DIRS.get('FERMI_DIR')
      cmd = enricodir+"/enrico/appertureLC.py %s" %infile
      LCoutfolder =  config['out']+"/"+AppLCPath
      os.system("mkdir -p "+LCoutfolder)
      prefix = LCoutfolder +"/"+ config['target']['name'] + "_AppertureLightCurve"
      scriptname = prefix+"_Script.sh"
      JobLog = prefix + "_Job.log"
      JobName = "LC_%s" %self.name
      call(cmd, enricodir, fermidir, scriptname, JobLog, JobName)

    verbose("--> Job sent successfully")
示例#7
0
def AppLC(infile):
    '''Main function of the apperture photometrie Lightcurve script. Read the config file and run the analysis'''
    ROOT.gROOT.SetBatch(ROOT.kTRUE)  #Batch mode

    enricodir = environ.DIRS.get('ENRICO_DIR')
    fermidir = environ.DIRS.get('FERMI_DIR')
    config = get_config(infile)

    folder = config['out']
    #Create a subfolder name LightCurve
    LCoutfolder = folder + "/" + AppLCPath
    os.system("mkdir -p " + LCoutfolder)

    #Change the ROI to the desired radius in degree, legacy 1 deg.
    try:
        config['space']['rad'] = config['AppLC']['rad']
    except NameError:
        config['space']['rad'] = 1

    Nbins = config['AppLC']['NLCbin']  #Number of bins
    #Get The time bin
    dt = (config['time']['tmax'] - config['time']['tmin']) / Nbins  #sec

    Obs = Observation(LCoutfolder, config, tag="")
    if config['AppLC']["FitsGeneration"] == "yes":
        _log('gtselect', 'Select data from library')  #run gtselect
        Obs.FirstCut()
        Obs.SelectEvents()
        _log('gtmktime',
             'Update the GTI and cut data based on ROI')  #run gtdiffresp
        Obs.MkTime()

        #Binning from data or using a fix bin size
        if config['AppLC']['binsFromData'] == "no":
            _log('gtbin', 'bin the data into a light-curve using fixe time bin'
                 )  #run gtbin
            print "Use a dt of %2.2e seconds" % (dt)
            Obs.GtLCbin(dt=dt)
        else:
            spfile = pyfits.open(Obs.eventfile)
            diff = spfile[1].data.field(9)[1:-1] - spfile[1].data.field(9)[:-2]
            dt = np.min(
                diff
            ) / 2.  ##Compute the delta T as being the min delta t between 2 events divided by 2
            timefile = LCoutfolder + "/Timebin.txt"
            MakeTimebinFile(Obs, timefile)
            _log('gtbindef', 'define de bins')  #run gtbindef
            Obs.GtBinDef(timefile)
            _log('gtbin',
                 'bin the data into a light-curve using bins based on data'
                 )  #run gtbin
            Obs.GtLCbin(dt=0)

        _log('gtexposure', 'compute the exposure')  #run gtexposure
        Obs.GtExposure()

    #Get Some usefull value here. This allow PlotAppLC to be call independently
    Nbins = config['AppLC']['NLCbin']  #Number of bins
    #Plot the results and dump into ascii files
    PlotAppLC(Nbins, LCoutfolder, Obs.lcfile)
示例#8
0
    def __init__(self, config):
        super(LightCurve, self).__init__()
        Loggin.Message.__init__(self)
        ROOT.gROOT.SetBatch(ROOT.kTRUE)  #Batch mode
        self.config = get_config(config)
        self.generalconfig = get_config(config)
        print(self.generalconfig)
        #Read the config
        self.srcname = self.config['target']['name']  #src name
        self.Tag = self.config['file']['tag']
        self.tmin = self.config['time']['tmin']
        self.tmax = self.config['time']['tmax']

        self.submit = self.config['Submit']
        # One point of the LC will be computed as a spectrum plot.
        # enrico_sed will be used
        # Do fits files will be generated
        self.config['Spectrum']['FitsGeneration'] = self.config['LightCurve'][
            'FitsGeneration']
        #Froze the Spectral index at a value of self.config['LightCurve']['SpectralIndex'] (no effect if 0)
        self.config['Spectrum']['FrozenSpectralIndex'] = self.config[
            'LightCurve']['SpectralIndex']
        #TS limit. Compute an UL if the TS is below TSLightCurve
        self.config['UpperLimit']['TSlimit'] = self.config['LightCurve'][
            'TSLightCurve']

        self.folder = self.config['out']

        #No plot, no bin in energy, no decE optimization, Normal UL
        self.config['Spectrum']['ResultPlots'] = 'no'
        self.config['Ebin']['NumEnergyBins'] = 0
        self.config['energy']['decorrelation_energy'] = 'no'
        self.config['UpperLimit']['envelope'] = 'no'
        #No submition. Submission will be directly handle by this soft
        self.config['Submit'] = 'no'
        #        self.config['verbose'] ='no' #Be quiet

        # Try to speed-up the analysis by reusing the evt file from the main analysis
        self._RecycleEvtCoarse()

        self.configfile = [
        ]  #All the config file in the disk are stored in a list
示例#9
0
    def __init__(self, config, parent_filename=""):
        super(LightCurve,self).__init__()
        Loggin.Message.__init__(self)
        self.parent_filename = os.path.abspath(parent_filename)
        self.config        = get_config(config)
        self.generalconfig = get_config(config)
        print(self.generalconfig)
        #Read the config
        self.srcname = self.config['target']['name'] #src name
        self.Tag = self.config['file']['tag']
        self.tmin = self.config['time']['tmin']
        self.tmax = self.config['time']['tmax']

        self.submit = self.config['Submit']
        # One point of the LC will be computed as a spectrum plot.
        # enrico_sed will be used
        # Do fits files will be generated
        #self.config['target']['spectrum'] = 'PowerLaw' # simplify the spectrum
        self.config['Spectrum']['FitsGeneration'] = self.config['LightCurve']['FitsGeneration']
        #Freeze the Spectral index at a value of self.config['LightCurve']['SpectralIndex'] (no effect if 0)
        self.config['Spectrum']['FrozenSpectralIndex'] = self.config['LightCurve']['SpectralIndex']
        if (self.config['LightCurve']['SpectralIndex'] != 0):
            self.config['UpperLimit']['SpectralIndex'] = self.config['LightCurve']['SpectralIndex']
        #TS limit. Compute an UL if the TS is below TSLightCurve
        self.config['UpperLimit']['TSlimit'] = self.config['LightCurve']['TSLightCurve']

        self.folder = self.config['out']
        # Do not create plots
        self.config['Spectrum']['ResultPlots'] = 'no' # no
        self.config['Spectrum']['ResultParentPlots'] = 'no' # no
        self.config['Ebin']['NumEnergyBins'] = 0
        self.config['energy']['decorrelation_energy'] = 'yes' # no
        self.config['UpperLimit']['envelope'] = 'no'
        # Submission will be directly handle by this soft
        self.config['Submit'] = 'no'
        # self.config['verbose'] ='no' #Be quiet

        # Speed-up the analysis by reusing the evt file from the main analysis
        self._RecycleEvtCoarse()

        self.configfile = [] #All the config file in the disk are stored in a list
示例#10
0
def AppLC(infile):
    '''Main function of the apperture photometrie Lightcurve script. Read the config file and run the analysis'''
    ROOT.gROOT.SetBatch(ROOT.kTRUE) #Batch mode

    enricodir = environ.DIRS.get('ENRICO_DIR')
    fermidir = environ.DIRS.get('FERMI_DIR')
    config = get_config(infile)

    folder = config['out']
    #Create a subfolder name LightCurve
    LCoutfolder = folder+"/"+AppLCPath
    utils.mkdir_p(LCoutfolder)

    #Change the ROI to the desired radius in degree, legacy 1 deg.
    try: config['space']['rad'] = config['AppLC']['rad']
    except NameError: config['space']['rad'] = 1

    Nbins = config['AppLC']['NLCbin']#Number of bins
    #Get The time bin
    dt = (config['time']['tmax']-config['time']['tmin'])/Nbins #sec

    Obs = Observation(LCoutfolder, config, tag="")
    if config['AppLC']["FitsGeneration"] == "yes":
        _log('gtselect', 'Select data from library')#run gtselect
        Obs.FirstCut()
        Obs.SelectEvents()
        _log('gtmktime', 'Update the GTI and cut data based on ROI')#run gtdiffresp
        Obs.MkTime()

        #Binning from data or using a fix bin size
        if config['AppLC']['binsFromData'] == "no":
            _log('gtbin', 'bin the data into a light-curve using fixe time bin')#run gtbin
            print "Use a dt of %2.2e seconds"%(dt)
            Obs.GtLCbin(dt = dt)
        else:
            spfile=fits.open(Obs.eventfile)
            diff = spfile[1].data.field(9)[1:-1]-spfile[1].data.field(9)[:-2]
            dt = np.min(diff)/2.  ##Compute the delta T as being the min delta t between 2 events divided by 2
            timefile = LCoutfolder+"/Timebin.txt"
            MakeTimebinFile(Obs,timefile)
            _log('gtbindef', 'define de bins')#run gtbindef
            Obs.GtBinDef(timefile)
            _log('gtbin', 'bin the data into a light-curve using bins based on data')#run gtbin
            Obs.GtLCbin(dt = 0)

        _log('gtexposure', 'compute the exposure')#run gtexposure
        Obs.GtExposure()

    #Get Some usefull value here. This allow PlotAppLC to be call independently
    Nbins = config['AppLC']['NLCbin']#Number of bins
    #Plot the results and dump into ascii files
    PlotAppLC(Nbins,LCoutfolder,Obs.lcfile)
示例#11
0
    def __init__(self, config, parent_filename=""):
        super(LightCurve,self).__init__()
        Loggin.Message.__init__(self)
        self.parent_filename = os.path.abspath(parent_filename)
        self.config        = get_config(config)
        self.generalconfig = get_config(config)
        print(self.generalconfig)
        #Read the config
        self.srcname = self.config['target']['name'] #src name
        self.Tag = self.config['file']['tag']
        self.tmin = self.config['time']['tmin']
        self.tmax = self.config['time']['tmax']

        self.submit = self.config['Submit']
        # One point of the LC will be computed as a spectrum plot.
        # enrico_sed will be used
        # Do fits files will be generated
        #self.config['target']['spectrum'] = 'PowerLaw' # simplify the spectrum
        self.config['Spectrum']['FitsGeneration'] = self.config['LightCurve']['FitsGeneration']
        #Freeze the Spectral index at a value of self.config['LightCurve']['SpectralIndex'] (no effect if 0)
        self.config['Spectrum']['FrozenSpectralIndex'] = self.config['LightCurve']['SpectralIndex']
        #TS limit. Compute an UL if the TS is below TSLightCurve
        self.config['UpperLimit']['TSlimit'] = self.config['LightCurve']['TSLightCurve']

        self.folder = self.config['out']
        # Do not create plots
        self.config['Spectrum']['ResultPlots'] = 'no' # no
        self.config['Spectrum']['ResultParentPlots'] = 'no' # no
        self.config['Ebin']['NumEnergyBins'] = 0
        self.config['energy']['decorrelation_energy'] = 'yes' # no
        self.config['UpperLimit']['envelope'] = 'no'
        # Submission will be directly handle by this soft
        self.config['Submit'] = 'no'
        # self.config['verbose'] ='no' #Be quiet

        # Speed-up the analysis by reusing the evt file from the main analysis
        self._RecycleEvtCoarse()

        self.configfile = [] #All the config file in the disk are stored in a list
示例#12
0
def RunEbin(folder,Nbin,Fit,FitRunner):
    if int(Nbin) > 0:
        configfiles = PrepareEbin(Fit, FitRunner)
        ind = 0
        enricodir = environ.DIRS.get('ENRICO_DIR')
        fermidir = environ.DIRS.get('FERMI_DIR')
        for conf in configfiles:
             pathconf = folder + "/"+ EbinPath + str(Nbin) +"/" + conf
             Newconfig = get_config(pathconf)
             cmd = enricodir+"/enrico/RunGTlike.py "+pathconf
             if Newconfig['Submit'] == 'no' : #run directly
                 os.system(cmd)
             else : #submit a job to a cluster
                 prefix = Newconfig['out'] + "/"+ EbinPath + str(ind) 
                 scriptname = prefix + "_Script.sh"
                 JobLog = prefix + "_Job.log"
                 JobName = (Newconfig['target']['name'] + "_" +
                           Newconfig['analysis']['likelihood'] +
                           "_Ebin_" + str(ind) + "_" + Newconfig['file']['tag'])
                 call(cmd, enricodir, fermidir, scriptname, JobLog, JobName)# submition
             ind+=1
示例#13
0
def FindSrc(infile):
    config = get_config(infile)
    folder = config['out']

    Obs = Observation(folder, config)
    utils._log('SUMMARY: ')
    Obs.printSum()

    FitRunner = FitMaker(Obs, config)

    if config["findsrc"]["FitsGeneration"]== "yes":
        config['analysis']['likelihood'] = 'unbinned'
        FitRunner.GenerateFits()

    FitRunner._log('gtfindsrc', 'Optimize source position')
    os.system("rm "+utils._dump_findsrcout(config))
    Obs.FindSource()
    try:
      update_reg(config)
    except:
      pass
示例#14
0
    def __init__(self, infile):
         self.config = get_config(infile)
         self.folder = self.config['out']
         os.system("mkdir -p "+self.folder+"/TestModel")
         convtype = self.config['analysis']['convtype']

         if self.config['Spectrum']['SummedLike'] == 'yes':
             Obs1 = Observation(self.folder, self.config, convtype=0, tag="FRONT")
             Obs2 = Observation(self.folder, self.config, convtype=1, tag="BACK")
             FitRunnerfront = FitMaker(Obs1, self.config)
             FitRunnerback = FitMaker(Obs2, self.config)
             FitRunnerfront.CreateLikeObject()
             FitRunnerback.CreateLikeObject()
             self.Fit = SummedLikelihood.SummedLikelihood()
         else:
             Obs = Observation(self.folder, self.config, convtype, tag="")
             FitRunner = FitMaker(Obs, self.config)##Class
             self.Fit = FitRunner.CreateLikeObject()

         # Store the results in a dictionnary
         self.Results = {}
         self.Results["PowerLaw"] = 0
         self.Results["LogParabola"] = 0
         self.Results["PLSuperExpCutoff"] = 0
示例#15
0
文件: tsmap.py 项目: jlenain/enrico
            src.getSrcFuncs()['Spectrum'].getParam('Prefactor').setBounds(1e-5,1e5)
            src.getSrcFuncs()['Spectrum'].getParam('Prefactor').setScale(1e-9)
            src.getSrcFuncs()['Spectrum'].getParam('Index').setBounds(-5,0)

            src.getSrcFuncs()['Spectrum'].getParam('Scale').setValue(300)
            src.getSrcFuncs()['Spectrum'].getParam('Scale').setBounds(1e-5,1e5)

            return src



if __name__ == '__main__':
    try:
        infile = sys.argv[1]
    except:
        print('FATAL: Config file not found.')
        sys.exit(1)

    from enrico.config import get_config
    config = get_config(infile)
    TSmap = TSMap(config,infile)

    if len(sys.argv)== 6 :
        if TSmap.config['TSMap']['method'] == 'row' :
            TSmap.FitOneRow(float(sys.argv[2]),int(sys.argv[4]))
        else :
            TSmap.FitOnePixel(float(sys.argv[2]),float(sys.argv[3]),int(sys.argv[4]),int(sys.argv[5]))
    else :
        print "Wrong number of arguments"
        sys.exit(1)
示例#16
0
    def _PlotLC(self,folded=False):
        self.info("Reading files produced by enrico")
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        # FluxErrChi2 = []
        Index = []
        IndexErr = []
        Cutoff = []
        CutoffErr = []
        FluxForNpred = []
        # FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []
        uplim = []

        # Find name used for index parameter
        if ((self.config['target']['spectrum'] == 'PowerLaw' or
             self.config['target']['spectrum'] == 'PowerLaw2') and
             self.config['target']['redshift'] == 0):
                IndexName = 'Index'
                CutoffName = None
        elif (self.config['target']['spectrum'] == 'PLExpCutoff' or
                self.config['target']['spectrum'] == 'PLSuperExpCutoff'):
            IndexName = 'Index1'
            CutoffName = 'Cutoff'
            CutoffErrName = 'dCutoff'
        else:
            IndexName = 'alpha'
            CutoffName = None
        IndexErrName = 'd' + IndexName

        Nfail = 0
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
                if ResultDic == {}:
                    raise(ValueError)
            except :
                self._errorReading("Fail reading config file",i)
                Nfail+=1
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)
            TimeErr.append((ResultDic.get("tmax")-ResultDic.get("tmin"))/2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue') :
                uplim.append(1)
                Flux.append(ResultDic.get("Ulvalue"))
                # FluxErr.append(0)
                # FluxErrChi2.append(ResultDic.get("dFlux"))
                # Index.append(ResultDic.get(IndexName))
                # IndexErr.append(0)
            else :
                uplim.append(0)
                Flux.append(ResultDic.get("Flux"))
            FluxErr.append(ResultDic.get("dFlux"))
            # FluxErrChi2.append(ResultDic.get("dFlux"))
            Index.append(ResultDic.get(IndexName))
            IndexErr.append(ResultDic.get(IndexErrName))
                # if CutoffName is not None:
                    # Cutoff.append(ResultDic.get(CutoffName))
                    # CutoffErr.append(ResultDic.get(CutoffErrName))
            # FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['LightCurve']['TSLightCurve']<float(ResultDic.get("TS"))):
                Npred_detected_indices.append(i-Nfail)

        # #change the list into np array
        # TS = np.array(TS)
        Npred = np.asarray(Npred)
        Npred_detected = np.asarray(Npred[Npred_detected_indices])
        Time = np.asarray(Time)
        TimeErr = np.asarray(TimeErr)
        Flux = np.asarray(Flux)
        FluxErr = np.asarray(FluxErr)
        # Index = np.array(Index)
        # IndexErr = np.array(IndexErr)
        # Cutoff = np.array(Cutoff)
        # CutoffErr = np.array(CutoffErr)
        FluxForNpred = np.asarray(FluxForNpred)
        # FluxErrForNpred = np.array(FluxErrForNpred)
        uplim = np.asarray(uplim,dtype=bool)
        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['LightCurve']['DiagnosticPlots'] == 'yes' and len(Npred)>0:
            #plot Npred vs flux
            plt.figure()
            NdN = np.asarray(Npred) /np.sqrt(Npred)
            FdF = np.asarray(FluxForNpred) / (np.asarray(FluxErr) + 1e-20)
            plt.errorbar(NdN, FdF,fmt='+',color='black')

            if len(Npred_detected)>2:
                NdN = np.asarray(Npred_detected) /np.sqrt(Npred_detected)
                FdF = np.asarray(FluxForNpred[Npred_detected_indices]) / (np.asarray(FluxErr[Npred_detected_indices]) + 1e-20)
                plt.errorbar(NdN, FdF,fmt='+',color='red')

                popt,_ = scipy.optimize.curve_fit(pol1, NdN, FdF, p0=[0,1])#, sigma=dydata)


                for i in xrange(len(FluxForNpred)):
                    if FluxForNpred[i]/FluxErr[i]>2*pol1(sqrt(Npred[i]),popt[0],popt[1]):
                        self._errorReading("problem in errors calculation for",i)
                        print "Flux +/- error = ",FluxForNpred[i]," +/- ",FluxErr[i]
                        print "V(Npred) = ",sqrt(Npred[i])
                        print

                plt.plot(np.array([0,max(NdN)]),pol1(np.array([0,max(NdN)]),popt[0],popt[1]),'--',color='black')
                plt.xlabel(r"${\rm Npred/\sqrt{Npred}}$")
                plt.ylabel(r"${\rm Flux/\Delta Flux}$")
                plt.savefig(LcOutPath+"_Npred.png", dpi=150, facecolor='w', edgecolor='w',
                    orientation='portrait', papertype=None, format=None,
                    transparent=False, bbox_inches=None, pad_inches=0.1,
                    frameon=None)
            else :
                print "No Npred Plot produced"

            #plot TS vs Time
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"Test Statistic")
            plt.errorbar(x=Time,y=TS,xerr=TimeErr,fmt='+',color='black',ls='None')
            plt.ylim(ymin=min(TS)*0.8,ymax=max(TS)*1.2)
            plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

            # Move the offset to the axis label
            ax = plt.gca()
            ax.get_yaxis().get_major_formatter().set_useOffset(False)
            offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
            if (offset_factor != 0):
                ax.set_yticklabels([float(round(k,5)) for k in ax.get_yticks()*10**(-offset_factor)])
                ax.yaxis.set_label_text(ax.yaxis.get_label_text() + r" [${\times 10^{%d}}$]" %offset_factor)

            # Secondary axis with MJD
            mjdaxis = ax.twiny()
            mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
            mjdaxis.set_xlabel(r"Time (MJD)")
            mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
            plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
            plt.tight_layout()

            plt.savefig(LcOutPath+"_TS.png", dpi=150, facecolor='w', edgecolor='w',
                    orientation='portrait', papertype=None, format=None,
                    transparent=False, bbox_inches=None, pad_inches=0.1,
                    frameon=None)


#    Plot the LC itself. This function return a TH2F for a nice plot
#    a TGraph and a list of TArrow for the ULs
        # if folded:
        #     phase = np.linspace(0,1,self.Nbin+1)
        #     Time = (phase[1:]+phase[:-1])/2.
        #     TimeErr = (phase[1:]-phase[:-1])/2.
        #     gTHLC,TgrLC,ArrowLC = plotting.PlotFoldedLC(Time,TimeErr,Flux,FluxErr)
        #     gTHIndex,TgrIndex,ArrowIndex = plotting.PlotFoldedLC(Time,TimeErr,Index,IndexErr)
        #     if CutoffName is not None:
        #         gTHCutoff,TgrCutoff,ArrowCutoff = plotting.PlotFoldedLC(Time,TimeErr,Cutoff,CutoffErr)
        # else :
        #     gTHLC,TgrLC,ArrowLC = plotting.PlotLC(Time,TimeErr,Flux,FluxErr)
        #     gTHIndex,TgrIndex,ArrowIndex = plotting.PlotLC(Time,TimeErr,Index,IndexErr)
        #     if CutoffName is not None:
        #         gTHCutoff,TgrCutoff,ArrowCutoff = plotting.PlotFoldedLC(Time,TimeErr,Cutoff,CutoffErr)

        # xmin = min(Time) - max(TimeErr) * 10
        # xmax = max(Time) + max(TimeErr) * 10
        # ymin = min(Flux) - max(FluxErr) * 1.3
        # ymax = max(Flux) + max(FluxErr) * 1.3
        plt.figure()
        plt.xlabel(r"Time (s)")
        plt.ylabel(r"${\rm Flux\ (photon\ cm^{-2}\ s^{-1})}$")
        # plt.ylim(ymin=ymin,ymax=ymax)
        # plt.xlim(xmin=xmin,xmax=xmax)
        #plt.errorbar(Time,Flux,xerr=TimeErr,yerr=FluxErr,i
        #             fmt='o',color='black',ls='None',uplims=uplim)
        plot_errorbar_withuls(Time,TimeErr,TimeErr,Flux,FluxErr,FluxErr,
                              uplim,bblocks=True)
        plt.ylim(ymin=max(plt.ylim()[0],np.percentile(Flux[~uplim],1)*0.1),
                 ymax=min(plt.ylim()[1],np.percentile(Flux[~uplim],99)*2.0))
        plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                 xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) \
              for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
              r" [${\times 10^{%d}}$]" %offset_factor)

        # Secondary axis with MJD
        mjdaxis = ax.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
        plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
        plt.tight_layout()

        plt.savefig(LcOutPath+"_LC.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        if self.config["LightCurve"]["SpectralIndex"] == 0 :
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"${\rm Index}$")
            Index = np.asarray(Index)
            IndexErr = np.asarray(IndexErr)
            uplimIndex = uplim #+ Index<0.55
            plot_errorbar_withuls(Time[~uplimIndex],
                                  TimeErr[~uplimIndex],
                                  TimeErr[~uplimIndex],
                                  Index[~uplimIndex],
                                  IndexErr[~uplimIndex],
                                  IndexErr[~uplimIndex],
                                  uplimIndex[~uplimIndex],
                                  bblocks=True)

            plt.ylim(ymin=max(plt.ylim()[0],np.percentile(Index[~uplimIndex],1)*0.1),
                     ymax=min(plt.ylim()[1],np.percentile(Index[~uplimIndex],99)*2.0))
            plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                     xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

            # Move the offset to the axis label
            ax = plt.gca()
            ax.get_yaxis().get_major_formatter().set_useOffset(False)
            offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
            if (offset_factor != 0):
                ax.set_yticklabels([float(round(k,5)) \
                  for k in ax.get_yticks()*10**(-offset_factor)])
                ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
                   r" [${\times 10^{%d}}$]" %offset_factor)

            # Secondary axis with MJD
            mjdaxis = ax.twiny()
            mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
            mjdaxis.set_xlabel(r"Time (MJD)")
            mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
            plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
            plt.tight_layout()
            plt.savefig(LcOutPath+"_Index.png", dpi=150,
                facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)


        # compute Fvar and probability of being cst

        self.info("Flux vs Time: infos")
        self.FitWithCst(Time,Flux,FluxErr)
        self.Fvar(Flux,FluxErr)

        # ### plot and save the Index LC
        # CanvIndex = ROOT.TCanvas()
        # gTHIndex.Draw()
        # TgrIndex.Draw('zP')

        # #plot the ul as arrow
        # for i in xrange(len(ArrowIndex)):
        #     ArrowIndex[i].Draw()

        # #Save the canvas in the LightCurve subfolder
        # if self.config["LightCurve"]["SpectralIndex"] == 0 :
        #     self.info("Index vs Time")
        #     self.FitWithCst(Time,Index,IndexErr)
        #     CanvIndex.Print(LcOutPath+'_Index.png')
        #     CanvIndex.Print(LcOutPath+'_Index.eps')
        #     CanvIndex.Print(LcOutPath+'_Index.C')


        #Dump into ascii
        lcfilename = LcOutPath+"_results.dat"
        self.info("Write to Ascii file : "+lcfilename)
        WriteToAscii(Time,TimeErr,Flux,FluxErr,Index,IndexErr,
                     Cutoff,CutoffErr,TS,Npred,lcfilename)

        if self.config["LightCurve"]['ComputeVarIndex'] == 'yes':
             self.VariabilityIndex()
示例#17
0
def PlotDataPoints(config,pars):
    """Collect the data points/UL and generate a TGraph for the points
    and a list of TArrow for the UL. All is SED format"""

    #Preparation + declaration of arrays
    arrows = []
    NEbin = int(config['Ebin']['NumEnergyBins'])
    lEmax = np.log10(float(config['energy']['emax']))
    lEmin = np.log10(float(config['energy']['emin']))
    Epoint = np.zeros(NEbin)
    EpointErrp = np.zeros(NEbin)
    EpointErrm = np.zeros(NEbin)
    Fluxpoint = np.zeros(NEbin)
    FluxpointErrp = np.zeros(NEbin)
    FluxpointErrm = np.zeros(NEbin)
    ener = np.logspace(lEmin, lEmax, NEbin + 1)

    mes = Loggin.Message()
    mes.info("Save Ebin results in ",pars.PlotName+".Ebin.dat")
    dumpfile = open(pars.PlotName+".Ebin.dat",'w')
    dumpfile.write("# Energy (MeV)\tEmin (MeV)\tEmax (MeV)\tE**2. dN/dE (erg.cm-2s-1)\tGaussianError\tMinosNegativeError\tMinosPositiveError\n")

    from enrico.constants import EbinPath
    for i in xrange(NEbin):#Loop over the energy bins
        E = int(pow(10, (np.log10(ener[i + 1]) + np.log10(ener[i])) / 2))
        filename = (config['out'] + '/'+EbinPath+str(NEbin)+'/' + config['target']['name'] +
                    "_" + str(i) + ".conf")
        try:#read the config file of each data points
            CurConf = get_config(filename)
            mes.info("Reading "+filename)
            results = utils.ReadResult(CurConf)
        except:
            mes.warning("cannot read the Results of energy "+ str(E))
            continue
        #fill the energy arrays
        Epoint[i] = E
        EpointErrm[i] = E - results.get("Emin")
        EpointErrp[i] = results.get("Emax") - E
        dprefactor = 0

        #Compute the flux or the UL (in SED format)
        if results.has_key('Ulvalue'):
            PrefUl = utils.Prefactor(results.get("Ulvalue"),results.get("Index"),
                                    results.get("Emin"),results.get("Emax"),E)
            Fluxpoint[i] = MEV_TO_ERG  * PrefUl * Epoint[i] ** 2
            arrows.append(ROOT.TArrow(Epoint[i], Fluxpoint[i], Epoint[i],
                                     Fluxpoint[i] * 0.5, 0.02, "|>"))
        else : #Not an UL : compute points + errors
            Fluxpoint[i] = MEV_TO_ERG  * results.get("Prefactor") * Epoint[i] ** 2
            dprefactor = results.get("dPrefactor")
            try:
                down = abs(results.get("dPrefactor-"))
                up = results.get("dPrefactor+")
                if down==0 or  up ==0 :
                  mes.error("cannot get Error value")
                FluxpointErrp[i] = MEV_TO_ERG  * up * Epoint[i] ** 2
                FluxpointErrm[i] = MEV_TO_ERG  * down * Epoint[i] ** 2
            except:
                try:
                    err = MEV_TO_ERG  * dprefactor * Epoint[i] ** 2
                    FluxpointErrp[i] = err
                    FluxpointErrm[i] = err
                except:
                    pass
        mes.info("Energy bins results")
        print "Energy = ",Epoint[i]
        print "E**2. dN/dE = ",Fluxpoint[i]," + ",FluxpointErrp[i]," - ",FluxpointErrm[i]

        #Save the data point in a ascii file
        dumpfile.write(str(Epoint[i])+"\t"+str(results.get("Emin"))+"\t"+str( results.get("Emax"))+"\t"+str(Fluxpoint[i])+"\t"+str( MEV_TO_ERG  * dprefactor * Epoint[i] ** 2)+"\t"+str(FluxpointErrm[i])+"\t"+str(FluxpointErrp[i])+"\n")
    #create a TGraph for the points
    tgpoint = ROOT.TGraphAsymmErrors(NEbin, Epoint, Fluxpoint, EpointErrm,
                                     EpointErrp, FluxpointErrm, FluxpointErrp)
    tgpoint.SetMarkerStyle(20)
    dumpfile.close()
    return tgpoint, arrows
示例#18
0
    def _PlotLC(self, folded=False):
        root_style.RootStyle()  #Nice plot style

        print "Reading files produced by enrico"
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        FluxForNpred = []
        FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []

        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading config file", i)
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)
            TimeErr.append(
                (ResultDic.get("tmax") - ResultDic.get("tmin")) / 2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue'):
                Flux.append(ResultDic.get("Ulvalue"))
                FluxErr.append(0)
            else:
                Flux.append(ResultDic.get("Flux"))
                FluxErr.append(ResultDic.get("dFlux"))
            FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['LightCurve']['TSLightCurve'] < float(
                    ResultDic.get("TS"))):
                Npred_detected_indices.append(i)

        #change the list into np array
        TS = np.array(TS)
        Npred = np.array(Npred)
        Npred_detected = Npred[Npred_detected_indices]
        Time = np.array(Time)
        TimeErr = np.array(TimeErr)
        Flux = np.array(Flux)
        FluxErr = np.array(FluxErr)
        FluxForNpred = np.array(FluxForNpred)
        FluxErrForNpred = np.array(FluxErrForNpred)

        fittedFunc = self.CheckNpred(
            Npred, FluxForNpred, FluxErrForNpred,
            Npred_detected_indices)  #check the errors calculation

        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['LightCurve']['DiagnosticPlots'] == 'yes':
            gTHNpred, TgrNpred = plotting.PlotNpred(Npred, FluxForNpred,
                                                    FluxErrForNpred)
            CanvNpred = _GetCanvas()
            gTHNpred.Draw()
            TgrNpred.Draw('zP')

            _, TgrNpred_detected = plotting.PlotNpred(
                Npred_detected, Flux[Npred_detected_indices],
                FluxErrForNpred[Npred_detected_indices])
            TgrNpred_detected.SetLineColor(2)
            TgrNpred_detected.SetMarkerColor(2)
            TgrNpred_detected.Draw('zP')
            fittedFunc.Draw("SAME")

            CanvNpred.Print(LcOutPath + "_Npred.eps")
            CanvNpred.Print(LcOutPath + "_Npred.C")

            gTHTS, TgrTS = plotting.PlotTS(Time, TimeErr, TS)
            CanvTS = _GetCanvas()
            gTHTS.Draw()
            TgrTS.Draw('zP')
            CanvTS.Print(LcOutPath + '_TS.eps')
            CanvTS.Print(LcOutPath + '_TS.C')

#    Plot the LC itself. This function return a TH2F for a nice plot
#    a TGraph and a list of TArrow for the ULs
        if folded:
            phase = np.linspace(0, 1, self.Nbin + 1)
            Time = (phase[1:] + phase[:-1]) / 2.
            TimeErr = (phase[1:] - phase[:-1]) / 2.
            gTHLC, TgrLC, ArrowLC = plotting.PlotFoldedLC(
                Time, TimeErr, Flux, FluxErr)
        else:
            gTHLC, TgrLC, ArrowLC = plotting.PlotLC(Time, TimeErr, Flux,
                                                    FluxErr)
        CanvLC = ROOT.TCanvas()
        gTHLC.Draw()
        TgrLC.Draw('zP')

        #plot the ul as arrow
        for i in xrange(len(ArrowLC)):
            ArrowLC[i].Draw()

        # compute Fvar and probability of being cst
        self.FitWithCst(TgrLC)
        self.Fvar(Flux, FluxErr)

        #Save the canvas in the LightCurve subfolder
        CanvLC.Print(LcOutPath + '_LC.eps')
        CanvLC.Print(LcOutPath + '_LC.C')

        #Dump into ascii
        lcfilename = LcOutPath + "_results.dat"
        print "Write to Ascii file : ", lcfilename
        WriteToAscii(Time, TimeErr, Flux, FluxErr, TS, Npred, lcfilename)

        if self.config["LightCurve"]['ComputeVarIndex'] == 'yes':
            self.VariabilityIndex()
示例#19
0
    def PlotLC(self):
        '''Plot a lightcurve which have been generated previously'''
        root_style.RootStyle()#Nice plot style

        print "Reading files produced by enrico"
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        FluxForNpred = []
        FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []

        self.PrepareLC()#Get the config file

        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("fail reading config file",i)
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)
            TimeErr.append((ResultDic.get("tmax")-ResultDic.get("tmin"))/2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue') :
                Flux.append(ResultDic.get("Ulvalue"))
                FluxErr.append(0)
            else :
                Flux.append(ResultDic.get("Flux"))
                FluxErr.append(ResultDic.get("dFlux"))
            FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['LightCurve']['TSLightCurve']<float(ResultDic.get("TS"))):
                Npred_detected_indices.append(i)

        #change the list into np array
        TS = np.array(TS)
        Npred = np.array(Npred)
        Npred_detected = Npred[Npred_detected_indices]
        Time = np.array(Time)
        TimeErr = np.array(TimeErr)
        Flux = np.array(Flux)
        FluxErr = np.array(FluxErr)
        FluxForNpred = np.array(FluxForNpred)
        FluxErrForNpred = np.array(FluxErrForNpred)

        fittedFunc = self.CheckNpred(Npred,FluxForNpred,FluxErrForNpred,Npred_detected_indices)#check the errors calculation

        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['LightCurve']['DiagnosticPlots'] == 'yes':
            gTHNpred,TgrNpred = plotting.PlotNpred(Npred,FluxForNpred,FluxErrForNpred)
            CanvNpred = _GetCanvas()
            gTHNpred.Draw()
            TgrNpred.Draw('zP')

            _,TgrNpred_detected = plotting.PlotNpred(Npred_detected,Flux[Npred_detected_indices],FluxErrForNpred[Npred_detected_indices])
            TgrNpred_detected.SetLineColor(2)
            TgrNpred_detected.SetMarkerColor(2)
            TgrNpred_detected.Draw('zP')
            fittedFunc.Draw("SAME")

            CanvNpred.Print(LcOutPath+"_Npred.eps")
            CanvNpred.Print(LcOutPath+"_Npred.C")

            gTHTS,TgrTS = plotting.PlotTS(Time,TimeErr,TS)
            CanvTS = _GetCanvas()
            gTHTS.Draw()
            TgrTS.Draw('zP')
            CanvTS.Print(LcOutPath+'_TS.eps')
            CanvTS.Print(LcOutPath+'_TS.C')

#    Plot the LC itself. This function return a TH2F for a nice plot
#    a TGraph and a list of TArrow for the ULs
        gTHLC,TgrLC,ArrowLC = plotting.PlotLC(Time,TimeErr,Flux,FluxErr)
        CanvLC = ROOT.TCanvas()
        gTHLC.Draw()
        TgrLC.Draw('zP')

        #plot the ul as arrow
        for i in xrange(len(ArrowLC)):
            ArrowLC[i].Draw()

        # compute Fvar and probability of being cst
        self.FitWithCst(TgrLC)
        self.Fvar(Flux,FluxErr)

        #Save the canvas in the LightCurve subfolder
        CanvLC.Print(LcOutPath+'_LC.eps')
        CanvLC.Print(LcOutPath+'_LC.C')

        #Dump into ascii
        lcfilename = LcOutPath+"_results.dat"
        print "Write to Ascii file : ",lcfilename
        WriteToAscii(Time,TimeErr,Flux,FluxErr,TS,Npred,lcfilename)

        if self.config["LightCurve"]['ComputeVarIndex'] == 'yes':
             self.VariabilityIndex()
示例#20
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'
        #        ValueDC = self.GetDCValue()
        ResultDicDC = utils.ReadResult(self.config)
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading the config file ", i)
                #                print "WARNING : fail reading the config file : ",CurConfig
                #                print "Job Number : ",i
                #                print "Please have a look at this job log file"
                continue


#            LogL1.append(ResultDic.get("log_like"))
#Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _, Fit = GenAnalysisObjects(CurConfig, verbose=0)  #be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            self.info("Spectral index frozen to a value of 2")
            utils.FreezeParams(Fit, self.srcname, 'Index', -2)
            LogL1.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            Model_type = Fit.model.srcs[self.srcname].spectrum().genericName()
            if (Model_type == 'PowerLaw'):
                utils.FreezeParams(Fit, self.srcname, 'Prefactor',
                                   utils.fluxNorm(ResultDicDC['Prefactor']))
            if (Model_type == 'PowerLaw2'):
                utils.FreezeParams(Fit, self.srcname, 'Integral',
                                   utils.fluxNorm(ResultDicDC['Integral']))
            LogL0.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            del Fit  #Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        #Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath + '_VarIndex.eps')
        Can.Print(LcOutPath + '_VarIndex.C')
        self.info("Variability index calculation")
        print "\t TSvar = ", 2 * (sum(LogL1) - sum(LogL0))
        print "\t NDF = ", len(LogL0) - 1
        print "\t Chi2 prob = ", ROOT.TMath.Prob(2 * (sum(LogL1) - sum(LogL0)),
                                                 len(LogL0) - 1)
        print
示例#21
0
    def _PlotLC(self,folded=False):
        self.info("Reading files produced by enrico")
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        # FluxErrChi2 = []
        Index = []
        IndexErr = []
        Cutoff = []
        CutoffErr = []
        FluxForNpred = []
        # FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []
        uplim = []

        # Find name used for index parameter
        if (self.config['target']['spectrum'] == 'PowerLaw' or
                self.config['target']['spectrum'] == 'PowerLaw2'):
                IndexName = 'Index'
                CutoffName = None
        elif (self.config['target']['spectrum'] == 'PLExpCutoff' or
                self.config['target']['spectrum'] == 'PLSuperExpCutoff'):
            IndexName = 'Index1'
            CutoffName = 'Cutoff'
            CutoffErrName = 'dCutoff'
        else:
            IndexName = 'alpha'
            CutoffName = None
        IndexErrName = 'd' + IndexName

        Nfail = 0
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
                if ResultDic == {}:
                    raise(ValueError)
            except :
                self._errorReading("Fail reading config file",i)
                Nfail+=1
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)
            TimeErr.append((ResultDic.get("tmax")-ResultDic.get("tmin"))/2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue') :
                uplim.append(1)
                Flux.append(ResultDic.get("Ulvalue"))
                # FluxErr.append(0)
                # FluxErrChi2.append(ResultDic.get("dFlux"))
                # Index.append(ResultDic.get(IndexName))
                # IndexErr.append(0)
            else :
                uplim.append(0)
                Flux.append(ResultDic.get("Flux"))
            FluxErr.append(ResultDic.get("dFlux"))
            # FluxErrChi2.append(ResultDic.get("dFlux"))
            Index.append(ResultDic.get(IndexName))
            IndexErr.append(ResultDic.get(IndexErrName))
                # if CutoffName is not None:
                    # Cutoff.append(ResultDic.get(CutoffName))
                    # CutoffErr.append(ResultDic.get(CutoffErrName))
            # FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['LightCurve']['TSLightCurve']<float(ResultDic.get("TS"))):
                Npred_detected_indices.append(i-Nfail)

        # #change the list into np array
        # TS = np.array(TS)
        Npred = np.asarray(Npred)
        Npred_detected = np.asarray(Npred[Npred_detected_indices])
        Time = np.asarray(Time)
        TimeErr = np.asarray(TimeErr)
        Flux = np.asarray(Flux)
        FluxErr = np.asarray(FluxErr)
        # Index = np.array(Index)
        # IndexErr = np.array(IndexErr)
        # Cutoff = np.array(Cutoff)
        # CutoffErr = np.array(CutoffErr)
        FluxForNpred = np.asarray(FluxForNpred)
        # FluxErrForNpred = np.array(FluxErrForNpred)
        uplim = np.asarray(uplim,dtype=bool)
        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['LightCurve']['DiagnosticPlots'] == 'yes' and len(Npred)>0:
            #plot Npred vs flux
            plt.figure()
            NdN = np.asarray(Npred) /np.sqrt(Npred)
            FdF = np.asarray(FluxForNpred) / (np.asarray(FluxErr) + 1e-20)
            plt.errorbar(NdN, FdF,fmt='+',color='black')

            if len(Npred_detected)>0:
                NdN = np.asarray(Npred_detected) /np.sqrt(Npred_detected)
                FdF = np.asarray(FluxForNpred[Npred_detected_indices]) / (np.asarray(FluxErr[Npred_detected_indices]) + 1e-20)
                plt.errorbar(NdN, FdF,fmt='+',color='red')

                popt,_ = scipy.optimize.curve_fit(pol1, NdN, FdF, p0=[0,1])#, sigma=dydata)


                for i in xrange(len(FluxForNpred)):
                    if FluxForNpred[i]/FluxErr[i]>2*pol1(sqrt(Npred[i]),popt[0],popt[1]):
                        self._errorReading("problem in errors calculation for",i)
                        print "Flux +/- error = ",FluxForNpred[i]," +/- ",FluxErr[i]
                        print "V(Npred) = ",sqrt(Npred[i])
                        print 

                plt.plot(np.array([0,max(NdN)]),pol1(np.array([0,max(NdN)]),popt[0],popt[1]),'--',color='black')
                plt.xlabel(r"${\rm Npred/\sqrt{Npred}}$")
                plt.ylabel(r"${\rm Flux/\Delta Flux}$")
                plt.savefig(LcOutPath+"_Npred.png", dpi=150, facecolor='w', edgecolor='w',
                    orientation='portrait', papertype=None, format=None,
                    transparent=False, bbox_inches=None, pad_inches=0.1,
                    frameon=None)
            else :
                print "No Npred Plot produced"

            #plot TS vs Time
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"Test Statistic")
            plt.errorbar(x=Time,y=TS,xerr=TimeErr,fmt='+',color='black',ls='None')
            plt.ylim(ymin=min(TS)*0.8,ymax=max(TS)*1.2)
            plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))
            
            # Move the offset to the axis label
            ax = plt.gca()
            ax.get_yaxis().get_major_formatter().set_useOffset(False)
            offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
            if (offset_factor != 0):
                ax.set_yticklabels([float(round(k,5)) for k in ax.get_yticks()*10**(-offset_factor)])
                ax.yaxis.set_label_text(ax.yaxis.get_label_text() + r" [${\times 10^{%d}}$]" %offset_factor)
            
            # Secondary axis with MJD
            mjdaxis = plt.twiny()
            mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
            mjdaxis.set_xlabel(r"Time (MJD)")
            plt.tight_layout()
            
            plt.savefig(LcOutPath+"_TS.png", dpi=150, facecolor='w', edgecolor='w',
                    orientation='portrait', papertype=None, format=None,
                    transparent=False, bbox_inches=None, pad_inches=0.1,
                    frameon=None)


#    Plot the LC itself. This function return a TH2F for a nice plot
#    a TGraph and a list of TArrow for the ULs
        # if folded:
        #     phase = np.linspace(0,1,self.Nbin+1)
        #     Time = (phase[1:]+phase[:-1])/2.
        #     TimeErr = (phase[1:]-phase[:-1])/2.
        #     gTHLC,TgrLC,ArrowLC = plotting.PlotFoldedLC(Time,TimeErr,Flux,FluxErr)
        #     gTHIndex,TgrIndex,ArrowIndex = plotting.PlotFoldedLC(Time,TimeErr,Index,IndexErr)
        #     if CutoffName is not None:
        #         gTHCutoff,TgrCutoff,ArrowCutoff = plotting.PlotFoldedLC(Time,TimeErr,Cutoff,CutoffErr)
        # else :
        #     gTHLC,TgrLC,ArrowLC = plotting.PlotLC(Time,TimeErr,Flux,FluxErr)
        #     gTHIndex,TgrIndex,ArrowIndex = plotting.PlotLC(Time,TimeErr,Index,IndexErr)
        #     if CutoffName is not None:
        #         gTHCutoff,TgrCutoff,ArrowCutoff = plotting.PlotFoldedLC(Time,TimeErr,Cutoff,CutoffErr)

        # xmin = min(Time) - max(TimeErr) * 10
        # xmax = max(Time) + max(TimeErr) * 10
        # ymin = min(Flux) - max(FluxErr) * 1.3
        # ymax = max(Flux) + max(FluxErr) * 1.3
        plt.figure()
        plt.xlabel(r"Time (s)")
        plt.ylabel(r"${\rm Flux\ (photon\ cm^{-2}\ s^{-1})}$")
        # plt.ylim(ymin=ymin,ymax=ymax)
        # plt.xlim(xmin=xmin,xmax=xmax)
        #plt.errorbar(Time,Flux,xerr=TimeErr,yerr=FluxErr,fmt='o',color='black',ls='None',uplims=uplim)
        plot_errorbar_withuls(Time,TimeErr,TimeErr,Flux,FluxErr,FluxErr,uplim,bblocks=True)
        plt.ylim(ymin=max(plt.ylim()[0],np.percentile(Flux[~uplim],1)*0.1),
                 ymax=min(plt.ylim()[1],np.percentile(Flux[~uplim],99)*2.0))
        plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                 xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))
        
        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() + r" [${\times 10^{%d}}$]" %offset_factor)
        
        # Secondary axis with MJD
        mjdaxis = plt.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        plt.tight_layout()
 
        plt.savefig(LcOutPath+"_LC.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        if self.config["LightCurve"]["SpectralIndex"] == 0 :
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"${\rm Index}$")
            Index = np.asarray(Index)
            IndexErr = np.asarray(IndexErr)
            uplimIndex = uplim + Index<0.55
            plot_errorbar_withuls(Time[~uplimIndex],TimeErr[~uplimIndex],TimeErr[~uplimIndex],
                                  Index[~uplimIndex],IndexErr[~uplimIndex],IndexErr[~uplimIndex],
                                  uplimIndex[~uplimIndex],bblocks=True)
            
            plt.ylim(ymin=max(plt.ylim()[0],np.percentile(Index[~uplimIndex],1)*0.1),ymax=min(plt.ylim()[1],np.percentile(Index[~uplimIndex],99)*2.0))
            plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))
            
            plt.savefig(LcOutPath+"_Index.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)
        

        # compute Fvar and probability of being cst

        self.info("Flux vs Time: infos")
        self.FitWithCst(Time,Flux,FluxErr)
        self.Fvar(Flux,FluxErr)

        # ### plot and save the Index LC
        # CanvIndex = ROOT.TCanvas()
        # gTHIndex.Draw()
        # TgrIndex.Draw('zP')

        # #plot the ul as arrow
        # for i in xrange(len(ArrowIndex)):
        #     ArrowIndex[i].Draw()

        # #Save the canvas in the LightCurve subfolder
        # if self.config["LightCurve"]["SpectralIndex"] == 0 :
        #     self.info("Index vs Time")
        #     self.FitWithCst(Time,Index,IndexErr)
        #     CanvIndex.Print(LcOutPath+'_Index.png')
        #     CanvIndex.Print(LcOutPath+'_Index.eps')
        #     CanvIndex.Print(LcOutPath+'_Index.C')


        #Dump into ascii
        lcfilename = LcOutPath+"_results.dat"
        self.info("Write to Ascii file : "+lcfilename)
        WriteToAscii(Time,TimeErr,Flux,FluxErr,Index,IndexErr,Cutoff,CutoffErr,TS,Npred,lcfilename)

        if self.config["LightCurve"]['ComputeVarIndex'] == 'yes':
             self.VariabilityIndex()
示例#22
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FGL catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try :
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except :
            self.warning("No results file found; please run enrico_sed first.")
            return

        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("Fail reading the config file ",i)
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index']  = -2.
            parameters['alpha']  = +2.
            parameters['Index1'] = -2.
            parameters['beta']   = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 30000. # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm","Prefactor","Integral"]:
                try:
                    utils.FreezeParams(Fit,self.srcname,key, utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue

            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory


        plt.figure()
        plt.xlabel("Time")
        plt.ylabel("Log(Like) Variability")
        plt.errorbar(Time,LogL0,fmt='o',color='black',ls='None')
        plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                 xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) \
              for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
               r" [${\times 10^{%d}}$]" %offset_factor)

        # Secondary axis with MJD
        mjdaxis = ax.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
        plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
        plt.tight_layout()

        plt.savefig(LcOutPath+"_VarIndex.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        self.info("Variability index calculation")
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",1 - chi2.cdf(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print
示例#23
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try:
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except:
            self.warning("No results file found; please run enrico_sed first.")
            return

        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading the config file ", i)
                #                print "WARNING : fail reading the config file : ",CurConfig
                #                print "Job Number : ",i
                #                print "Please have a look at this job log file"
                continue


#            LogL1.append(ResultDic.get("log_like"))
#Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _, Fit = GenAnalysisObjects(CurConfig, verbose=0)  #be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index'] = -2.
            parameters['alpha'] = +2.
            parameters['Index1'] = -2.
            parameters['beta'] = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 30000.  # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm", "Prefactor", "Integral"]:
                try:
                    utils.FreezeParams(Fit, self.srcname, key,
                                       utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue

            LogL0.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            del Fit  #Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        #Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath + '_VarIndex.eps')
        Can.Print(LcOutPath + '_VarIndex.C')
        self.info("Variability index calculation")
        print "\t TSvar = ", 2 * (sum(LogL1) - sum(LogL0))
        print "\t NDF = ", len(LogL0) - 1
        print "\t Chi2 prob = ", ROOT.TMath.Prob(2 * (sum(LogL1) - sum(LogL0)),
                                                 len(LogL0) - 1)
        print
示例#24
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config["target"]["name"]

        utils._log("Computing Variability index ")

        self.config["Spectrum"]["FitsGeneration"] = "no"
        #        ValueDC = self.GetDCValue()
        ResultDicDC = utils.ReadResult(self.config)
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            # Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading the config file ", i)
                #                print "WARNING : fail reading the config file : ",CurConfig
                #                print "Job Number : ",i
                #                print "Please have a look at this job log file"
                continue

            #            LogL1.append(ResultDic.get("log_like"))
            # Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.0)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig["Spectrum"]["FitsGeneration"] = "no"
            _, Fit = GenAnalysisObjects(CurConfig, verbose=0)  # be quiet
            Fit.ftol = float(self.config["fitting"]["ftol"])

            # Spectral index management!
            self.info("Spectral index frozen to a value of 2")
            utils.FreezeParams(Fit, self.srcname, "Index", -2)
            LogL1.append(-Fit.fit(0, optimizer=CurConfig["fitting"]["optimizer"]))

            Model_type = Fit.model.srcs[self.srcname].spectrum().genericName()
            if Model_type == "PowerLaw":
                utils.FreezeParams(Fit, self.srcname, "Prefactor", utils.fluxNorm(ResultDicDC["Prefactor"]))
            if Model_type == "PowerLaw2":
                utils.FreezeParams(Fit, self.srcname, "Integral", utils.fluxNorm(ResultDicDC["Integral"]))
            LogL0.append(-Fit.fit(0, optimizer=CurConfig["fitting"]["optimizer"]))

            del Fit  # Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        # Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath + "_VarIndex.eps")
        Can.Print(LcOutPath + "_VarIndex.C")
        self.info("Variability index calculation")
        print "\t TSvar = ", 2 * (sum(LogL1) - sum(LogL0))
        print "\t NDF = ", len(LogL0) - 1
        print "\t Chi2 prob = ", ROOT.TMath.Prob(2 * (sum(LogL1) - sum(LogL0)), len(LogL0) - 1)
        print
示例#25
0
    def _PlotLC(self, folded=False):
        root_style.RootStyle()  # Nice plot style

        self.info("Reading files produced by enrico")
        LcOutPath = self.LCfolder + self.config["target"]["name"]

        # Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        Index = []
        IndexErr = []
        Cutoff = []
        CutoffErr = []
        FluxForNpred = []
        FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []

        # Find name used for index parameter
        if self.config["target"]["spectrum"] == "PowerLaw" or self.config["target"]["spectrum"] == "PowerLaw2":
            IndexName = "Index"
            CutoffName = None
        elif (
            self.config["target"]["spectrum"] == "PLExpCutoff"
            or self.config["target"]["spectrum"] == "PLSuperExpCutoff"
        ):
            IndexName = "Index1"
            CutoffName = "Cutoff"
            CutoffErrName = "dCutoff"
        IndexErrName = "d" + IndexName

        Nfail = 0
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            # Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("Fail reading config file", i)
                Nfail += 1
                continue

            # Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.0)
            TimeErr.append((ResultDic.get("tmax") - ResultDic.get("tmin")) / 2.0)
            # Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key("Ulvalue"):
                Flux.append(ResultDic.get("Ulvalue"))
                FluxErr.append(0)
                Index.append(ResultDic.get(IndexName))
                IndexErr.append(0)
            else:
                Flux.append(ResultDic.get("Flux"))
                FluxErr.append(ResultDic.get("dFlux"))
                Index.append(ResultDic.get(IndexName))
                IndexErr.append(ResultDic.get(IndexErrName))
                if CutoffName is not None:
                    Cutoff.append(ResultDic.get(CutoffName))
                    CutoffErr.append(ResultDic.get(CutoffErrName))
            FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            # Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if CurConfig["LightCurve"]["TSLightCurve"] < float(ResultDic.get("TS")):
                Npred_detected_indices.append(i - Nfail)

        # change the list into np array
        TS = np.array(TS)
        Npred = np.array(Npred)
        Npred_detected = Npred[Npred_detected_indices]
        Time = np.array(Time)
        TimeErr = np.array(TimeErr)
        Flux = np.array(Flux)
        FluxErr = np.array(FluxErr)
        Index = np.array(Index)
        IndexErr = np.array(IndexErr)
        Cutoff = np.array(Cutoff)
        CutoffErr = np.array(CutoffErr)
        FluxForNpred = np.array(FluxForNpred)
        FluxErrForNpred = np.array(FluxErrForNpred)

        # Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config["LightCurve"]["DiagnosticPlots"] == "yes":
            fittedFunc = self.CheckNpred(
                Npred, FluxForNpred, FluxErrForNpred, Npred_detected_indices
            )  # check the errors calculation
            gTHNpred, TgrNpred = plotting.PlotNpred(Npred, FluxForNpred, FluxErrForNpred)
            CanvNpred = _GetCanvas()
            gTHNpred.Draw()
            TgrNpred.Draw("zP")

            _, TgrNpred_detected = plotting.PlotNpred(
                Npred_detected, Flux[Npred_detected_indices], FluxErrForNpred[Npred_detected_indices]
            )
            TgrNpred_detected.SetLineColor(2)
            TgrNpred_detected.SetMarkerColor(2)
            TgrNpred_detected.Draw("zP")
            fittedFunc.Draw("SAME")

            CanvNpred.Print(LcOutPath + "_Npred.png")
            CanvNpred.Print(LcOutPath + "_Npred.eps")
            CanvNpred.Print(LcOutPath + "_Npred.C")

            gTHTS, TgrTS = plotting.PlotTS(Time, TimeErr, TS)
            CanvTS = _GetCanvas()
            gTHTS.Draw()
            TgrTS.Draw("zP")
            CanvTS.Print(LcOutPath + "_TS.png")
            CanvTS.Print(LcOutPath + "_TS.eps")
            CanvTS.Print(LcOutPath + "_TS.C")

        #    Plot the LC itself. This function return a TH2F for a nice plot
        #    a TGraph and a list of TArrow for the ULs
        if folded:
            phase = np.linspace(0, 1, self.Nbin + 1)
            Time = (phase[1:] + phase[:-1]) / 2.0
            TimeErr = (phase[1:] - phase[:-1]) / 2.0
            gTHLC, TgrLC, ArrowLC = plotting.PlotFoldedLC(Time, TimeErr, Flux, FluxErr)
            gTHIndex, TgrIndex, ArrowIndex = plotting.PlotFoldedLC(Time, TimeErr, Index, IndexErr)
            if CutoffName is not None:
                gTHCutoff, TgrCutoff, ArrowCutoff = plotting.PlotFoldedLC(Time, TimeErr, Cutoff, CutoffErr)
        else:
            gTHLC, TgrLC, ArrowLC = plotting.PlotLC(Time, TimeErr, Flux, FluxErr)
            gTHIndex, TgrIndex, ArrowIndex = plotting.PlotLC(Time, TimeErr, Index, IndexErr)
            if CutoffName is not None:
                gTHCutoff, TgrCutoff, ArrowCutoff = plotting.PlotFoldedLC(Time, TimeErr, Cutoff, CutoffErr)

        ### plot and save the flux LC
        CanvLC = ROOT.TCanvas()
        gTHLC.Draw()
        TgrLC.Draw("zP")

        # plot the ul as arrow
        for i in xrange(len(ArrowLC)):
            ArrowLC[i].Draw()

        # compute Fvar and probability of being cst

        self.info("Flux vs Time: infos")
        self.FitWithCst(TgrLC)
        self.Fvar(Flux, FluxErr)

        # Save the canvas in the LightCurve subfolder
        CanvLC.Print(LcOutPath + "_LC.png")
        CanvLC.Print(LcOutPath + "_LC.eps")
        CanvLC.Print(LcOutPath + "_LC.C")

        ### plot and save the Index LC
        CanvIndex = ROOT.TCanvas()
        gTHIndex.Draw()
        TgrIndex.Draw("zP")

        # plot the ul as arrow
        for i in xrange(len(ArrowIndex)):
            ArrowIndex[i].Draw()

        # Save the canvas in the LightCurve subfolder
        if self.config["LightCurve"]["SpectralIndex"] == 0:
            self.info("Index vs Time")
            self.FitWithCst(TgrIndex)
            CanvIndex.Print(LcOutPath + "_Index.png")
            CanvIndex.Print(LcOutPath + "_Index.eps")
            CanvIndex.Print(LcOutPath + "_Index.C")

        if len(Cutoff) > 0:
            ### plot and save the Cutoff LC
            CanvCutoff = ROOT.TCanvas()
            gTHCutoff.Draw()
            TgrCutoff.Draw("zP")

            # plot the ul as arrow
            for i in xrange(len(ArrowCutoff)):
                ArrowCutoff[i].Draw()

            print "Cutoff vs Time: infos"
            self.FitWithCst(TgrCutoff)
            CanvCutoff.Print(LcOutPath + "_Cutoff.png")
            CanvCutoff.Print(LcOutPath + "_Cutoff.eps")
            CanvCutoff.Print(LcOutPath + "_Cutoff.C")

        # Dump into ascii
        lcfilename = LcOutPath + "_results.dat"
        self.info("Write to Ascii file : " + lcfilename)
        WriteToAscii(Time, TimeErr, Flux, FluxErr, Index, IndexErr, Cutoff, CutoffErr, TS, Npred, lcfilename)

        if self.config["LightCurve"]["ComputeVarIndex"] == "yes":
            self.VariabilityIndex()
示例#26
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FGL catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try :
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except :
            self.warning("No results file found; please run enrico_sed first.")
            return

        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("Fail reading the config file ",i)
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index']  = -2.
            parameters['alpha']  = +2.
            parameters['Index1'] = -2.
            parameters['beta']   = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 100000. # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm","Prefactor","Integral"]:
                try:
                    utils.FreezeParams(Fit,self.srcname,key, utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue

            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory


        plt.figure()
        plt.xlabel("Time")
        plt.ylabel("Log(Like) Variability")
        plt.errorbar(Time,LogL0,fmt='o',color='black',ls='None')
        plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                 xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) \
              for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
               r" [${\times 10^{%d}}$]" %offset_factor)

        # Secondary axis with MJD
        mjdaxis = ax.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
        plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
        plt.tight_layout()

        plt.savefig(LcOutPath+"_VarIndex.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        self.info("Variability index calculation")
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",1 - chi2.cdf(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print
示例#27
0
  def write_config(self):
    verbose("-> Write config file for %s" %(self.name))
    import enrico
    from enrico.config import get_config
    # Create object
    config = ConfigObj(indent_type='\t')
    mes = Loggin.Message()
    config['out']    = self.output+'/%s_%s/'%(self.name,self.band)
    config['Submit'] = 'no'
    # target
    config['target'] = {}
    config['target']['name'] = self.name
    config['target']['ra']   = str("%.4f" %self.RA)
    config['target']['dec']  = str("%.4f" %self.DEC)
    config['target']['redshift'] = '0'
    config['target']['spectrum'] = 'PowerLaw'
    # space
    config['space'] = {}
    config['space']['xref'] = config['target']['ra']
    config['space']['yref'] = config['target']['dec']
    config['space']['rad']  = self.roi
    # files
    #basepath = "/".join(enrico.__path__[0].split("/")[0:-1])
    #datapath = basepath+"/Data/download/"
    config['file'] = {}
    #config['file']['spacecraft'] = str("%s/lat_spacecraft_merged.fits" %datapath)
    #config['file']['event']      = str("%s/event.list" %datapath)
    config['file']['spacecraft'] = self.SCfile
    config['file']['event']      = self.PHfile
    config['file']['tag']        = 'fast'
    # time
    config['time'] = {}
    self.calculate_times()
    config['time']['tmin'] = self.timemin
    config['time']['tmax'] = self.timemax
    # energy
    config['energy'] = {}
    if (self.band=='lo'):
      config['energy']['emin'] = self.energymin
      config['energy']['emax'] = self.energycut
    elif (self.band=='hi'):
      config['energy']['emin'] = self.energycut
      config['energy']['emax'] = self.energymax
    else:
      config['energy']['emin'] = self.energymin
      config['energy']['emax'] = self.energymax

    config['energy']['enumbins_per_decade'] = 5
    # event class
    config['event'] = {}
    config['event']['irfs'] = 'CALDB'
    config['event']['evclass'] = '64' #'128' #64=transients, 128=source
    config['event']['evtype'] = '3'
    # analysis
    config['analysis'] = {}
    config['analysis']['zmax'] = 100
    # Validate
    verbose(config)
    # Add the rest of the values
    config = get_config(config)
    # Tune the remaining variables
    config['AppLC']['index'] = self.spindex
    config['AppLC']['NLCbin'] = int(24*self.timewindow/self.binsize+0.5)
    config['AppLC']['rad']  = self.roi
    # Write config file
    self.configfile = str("%s/%s_%sE.conf" %(self.output,self.name,self.band))
    with open(self.configfile,'w') as f:
      config.write(f)
示例#28
0
文件: tsmap.py 项目: Tobychev/enrico
                src.getSrcFuncs()['Spectrum'].getParam('Scale').setValue(300)
                src.getSrcFuncs()['Spectrum'].getParam('Scale').setBounds(1e-5,1e5)

                return src



if __name__ == '__main__':
    try:
        infile = sys.argv[1]
    except:
        from enrico import Loggin
        mes = Loggin.Message()
        mes.error('Config file not found.')


    from enrico.config import get_config
    config = get_config(infile)
    TSmap = TSMap(config,infile)

    if len(sys.argv)== 6 :
        if TSmap.config['TSMap']['method'] == 'row' :
            TSmap.FitOneRow(float(sys.argv[2]),int(sys.argv[4]))
        else :
            TSmap.FitOnePixel(float(sys.argv[2]),float(sys.argv[3]),int(sys.argv[4]),int(sys.argv[5]))
    else :
        from enrico import Loggin
        mes = Loggin.Message()
        mes.error("Wrong number of arguments")
示例#29
0
    def _PlotLC(self, folded=False):
        self.info("Reading files produced by enrico")
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        # FluxErrChi2 = []
        Index = []
        IndexErr = []
        Cutoff = []
        CutoffErr = []
        FluxForNpred = []
        # FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []
        uplim = []

        # Find name used for index parameter
        if ((self.config['target']['spectrum'] == 'PowerLaw'
             or self.config['target']['spectrum'] == 'PowerLaw2')
                and self.config['target']['redshift'] == 0):
            IndexName = 'Index'
            CutoffName = None
        elif (self.config['target']['spectrum'] == 'PLExpCutoff'
              or self.config['target']['spectrum'] == 'PLSuperExpCutoff'):
            IndexName = 'Index1'
            CutoffName = 'Cutoff'
            CutoffErrName = 'dCutoff'
        else:
            IndexName = 'alpha'
            CutoffName = None
        IndexErrName = 'd' + IndexName

        Nfail = 0
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
                if ResultDic == {}:
                    raise (ValueError)
            except:
                self._errorReading("Fail reading config file", i)
                Nfail += 1
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)
            TimeErr.append(
                (ResultDic.get("tmax") - ResultDic.get("tmin")) / 2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue'):
                uplim.append(1)
                Flux.append(ResultDic.get("Ulvalue"))
                # FluxErr.append(0)
                # FluxErrChi2.append(ResultDic.get("dFlux"))
                # Index.append(ResultDic.get(IndexName))
                # IndexErr.append(0)
            else:
                uplim.append(0)
                Flux.append(ResultDic.get("Flux"))
            FluxErr.append(ResultDic.get("dFlux"))
            # FluxErrChi2.append(ResultDic.get("dFlux"))
            Index.append(ResultDic.get(IndexName))
            IndexErr.append(ResultDic.get(IndexErrName))
            # if CutoffName is not None:
            # Cutoff.append(ResultDic.get(CutoffName))
            # CutoffErr.append(ResultDic.get(CutoffErrName))
            # FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['BayesianBlocks']['TSLightCurve'] < float(
                    ResultDic.get("TS"))):
                Npred_detected_indices.append(i - Nfail)

        # #change the list into np array
        # TS = np.array(TS)
        Npred = np.asarray(Npred)
        Npred_detected = np.asarray(Npred[Npred_detected_indices])
        Time = np.asarray(Time)
        TimeErr = np.asarray(TimeErr)
        Flux = np.asarray(Flux)
        FluxErr = np.asarray(FluxErr)
        # Index = np.array(Index)
        # IndexErr = np.array(IndexErr)
        # Cutoff = np.array(Cutoff)
        # CutoffErr = np.array(CutoffErr)
        FluxForNpred = np.asarray(FluxForNpred)
        # FluxErrForNpred = np.array(FluxErrForNpred)
        uplim = np.asarray(uplim, dtype=bool)
        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['BayesianBlocks']['DiagnosticPlots'] == 'yes' and len(
                Npred) > 0:
            #plot Npred vs flux
            plt.figure()
            NdN = np.asarray(Npred) / np.sqrt(Npred)
            FdF = np.asarray(FluxForNpred) / (np.asarray(FluxErr) + 1e-20)
            plt.errorbar(NdN, FdF, fmt='+', color='black')

            if len(Npred_detected) > 2:
                NdN = np.asarray(Npred_detected) / np.sqrt(Npred_detected)
                FdF = np.asarray(FluxForNpred[Npred_detected_indices]) / (
                    np.asarray(FluxErr[Npred_detected_indices]) + 1e-20)
                plt.errorbar(NdN, FdF, fmt='+', color='red')

                popt, _ = scipy.optimize.curve_fit(pol1, NdN, FdF,
                                                   p0=[0, 1])  #, sigma=dydata)

                for i in xrange(len(FluxForNpred)):
                    if FluxForNpred[i] / FluxErr[i] > 2 * pol1(
                            sqrt(Npred[i]), popt[0], popt[1]):
                        self._errorReading("problem in errors calculation for",
                                           i)
                        print "Flux +/- error = ", FluxForNpred[
                            i], " +/- ", FluxErr[i]
                        print "V(Npred) = ", sqrt(Npred[i])
                        print

                plt.plot(np.array([0, max(NdN)]),
                         pol1(np.array([0, max(NdN)]), popt[0], popt[1]),
                         '--',
                         color='black')
                plt.xlabel(r"${\rm Npred/\sqrt{Npred}}$")
                plt.ylabel(r"${\rm Flux/\Delta Flux}$")
                plt.savefig(LcOutPath + "_Npred.png",
                            dpi=150,
                            facecolor='w',
                            edgecolor='w',
                            orientation='portrait',
                            papertype=None,
                            format=None,
                            transparent=False,
                            bbox_inches=None,
                            pad_inches=0.1,
                            frameon=None)
            else:
                print "No Npred Plot produced"

            #plot TS vs Time
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"Test Statistic")
            plt.errorbar(x=Time,
                         y=TS,
                         xerr=TimeErr,
                         fmt='+',
                         color='black',
                         ls='None')
            plt.ylim(ymin=min(TS) * 0.8, ymax=max(TS) * 1.2)
            plt.xlim(xmin=max(plt.xlim()[0],
                              1.02 * min(Time) - 0.02 * max(Time)),
                     xmax=min(plt.xlim()[1],
                              1.02 * max(Time) - 0.02 * min(Time)))

            # Move the offset to the axis label
            ax = plt.gca()
            ax.get_yaxis().get_major_formatter().set_useOffset(False)
            offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
            if (offset_factor != 0):
                ax.set_yticklabels([
                    float(round(k, 5))
                    for k in ax.get_yticks() * 10**(-offset_factor)
                ])
                ax.yaxis.set_label_text(ax.yaxis.get_label_text() +
                                        r" [${\times 10^{%d}}$]" %
                                        offset_factor)

            # Secondary axis with MJD
            mjdaxis = ax.twiny()
            mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
            mjdaxis.set_xlabel(r"Time (MJD)")
            mjdaxis.xaxis.set_major_formatter(
                matplotlib.ticker.ScalarFormatter(useOffset=False))
            plt.setp(mjdaxis.xaxis.get_majorticklabels(), rotation=15)
            plt.tight_layout()

            plt.savefig(LcOutPath + "_TS.png",
                        dpi=150,
                        facecolor='w',
                        edgecolor='w',
                        orientation='portrait',
                        papertype=None,
                        format=None,
                        transparent=False,
                        bbox_inches=None,
                        pad_inches=0.1,
                        frameon=None)

        if len(Time) > 0:
            plt.figure()
            plt.xlabel(r"Time (s)")
            plt.ylabel(r"${\rm Flux\ (photon\ cm^{-2}\ s^{-1})}$")
            plot_bayesianblocks(Time - TimeErr, Time + TimeErr, Flux, FluxErr,
                                FluxErr, uplim)
            plt.ylim(ymin=max(plt.ylim()[0],
                              np.percentile(Flux[~uplim], 1) * 0.1),
                     ymax=min(plt.ylim()[1],
                              np.percentile(Flux[~uplim], 99) * 2.0))
            plt.xlim(xmin=max(
                plt.xlim()[0],
                1.02 * min(Time - TimeErr) - 0.02 * max(Time + TimeErr)),
                     xmax=min(
                         plt.xlim()[1], 1.02 * max(Time + TimeErr) -
                         0.02 * min(Time - TimeErr)))
            # Move the offset to the axis label
            ax = plt.gca()
            ax.get_yaxis().get_major_formatter().set_useOffset(False)
            offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
            if (offset_factor != 0):
                ax.set_yticklabels([float(round(k,5)) \
                  for k in ax.get_yticks()*10**(-offset_factor)])
                ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
                  r" [${\times 10^{%d}}$]" %offset_factor)

            # Secondary axis with MJD
            mjdaxis = ax.twiny()
            mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
            mjdaxis.set_xlabel(r"Time (MJD)")
            mjdaxis.xaxis.set_major_formatter(
                matplotlib.ticker.ScalarFormatter(useOffset=False))
            plt.setp(mjdaxis.xaxis.get_majorticklabels(), rotation=15)
            plt.tight_layout()

            plt.savefig(LcOutPath + "_LC.png",
                        dpi=150,
                        facecolor='w',
                        edgecolor='w',
                        orientation='portrait',
                        papertype=None,
                        format=None,
                        transparent=False,
                        bbox_inches=None,
                        pad_inches=0.1,
                        frameon=None)
        else:
            print "[BayesianBlocks] Warning : No valid data"

        if self.config["BayesianBlocks"]["SpectralIndex"] == 0:
            if len(Time[~uplimIndex]) > 0:
                plt.figure()
                plt.xlabel(r"Time (s)")
                plt.ylabel(r"${\rm Index}$")
                Index = np.asarray(Index)
                IndexErr = np.asarray(IndexErr)
                uplimIndex = uplim  #+ Index<0.55
                plot_bayesianblocks(Time[~uplimIndex] - TimeErr[~uplimIndex],
                                    Time[~uplimIndex] + TimeErr[~uplimIndex],
                                    Index[~uplimIndex], IndexErr[~uplimIndex],
                                    IndexErr[~uplimIndex],
                                    uplimIndex[~uplimIndex])

                plt.ylim(ymin=max(plt.ylim()[0],
                                  np.percentile(Index[~uplimIndex], 1) * 0.1),
                         ymax=min(plt.ylim()[1],
                                  np.percentile(Index[~uplimIndex], 99) * 2.0))
                plt.xlim(xmin=max(
                    plt.xlim()[0],
                    1.02 * min(Time - TimeErr) - 0.02 * max(Time + TimeErr)),
                         xmax=min(
                             plt.xlim()[1], 1.02 * max(Time + TimeErr) -
                             0.02 * min(Time - TimeErr)))

                # Move the offset to the axis label
                ax = plt.gca()
                ax.get_yaxis().get_major_formatter().set_useOffset(False)
                offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
                if (offset_factor != 0):
                    ax.set_yticklabels([float(round(k,5)) \
                      for k in ax.get_yticks()*10**(-offset_factor)])
                    ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
                       r" [${\times 10^{%d}}$]" %offset_factor)

                # Secondary axis with MJD
                mjdaxis = ax.twiny()
                mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
                mjdaxis.set_xlabel(r"Time (MJD)")
                mjdaxis.xaxis.set_major_formatter(
                    matplotlib.ticker.ScalarFormatter(useOffset=False))
                plt.setp(mjdaxis.xaxis.get_majorticklabels(), rotation=15)
                plt.tight_layout()
                plt.savefig(LcOutPath + "_Index.png",
                            dpi=150,
                            facecolor='w',
                            edgecolor='w',
                            orientation='portrait',
                            papertype=None,
                            format=None,
                            transparent=False,
                            bbox_inches=None,
                            pad_inches=0.1,
                            frameon=None)
            else:
                print "[BayesianBlocks] Warning : No valid data"

        #Dump into ascii
        lcfilename = LcOutPath + "_results.dat"
        self.info("Write to Ascii file : " + lcfilename)
        lightcurve.WriteToAscii(Time, TimeErr, Flux, FluxErr, Index, IndexErr,
                                Cutoff, CutoffErr, TS, Npred, lcfilename)
示例#30
0
def run(infile):
    from enrico import utils
    from enrico import energybin
    from enrico.config import get_config
    from enrico import Loggin
    mes = Loggin.Message()
    """Run an entire Fermi analysis (spectrum) by reading a config file"""
    config = get_config(infile)
    folder = config['out']
    utils.mkdir_p(folder)

    FitRunner, Fit = GenAnalysisObjects(config)
    # create all the fit files and run gtlike
    FitRunner.PerformFit(Fit)
    sedresult = None

    #plot the SED and model map if possible and asked
    if float(config['UpperLimit']['TSlimit']) < Fit.Ts(
            config['target']['name']):
        if config['Spectrum']['ResultPlots'] == 'yes':
            from enrico.constants import SpectrumPath
            utils.mkdir_p("%s/%s/" % (config['out'], SpectrumPath))
            sedresult = FitRunner.ComputeSED(Fit, dump=True)
        else:
            sedresult = FitRunner.ComputeSED(Fit, dump=False)

        if (config['energy']['decorrelation_energy'] == 'yes'):
            #Update the energy scale to decorrelation energy
            mes.info(
                'Setting the decorrelation energy as new Scale for the spectral parameters'
            )
            spectrum = Fit[FitRunner.obs.srcname].funcs['Spectrum']
            modeltype = spectrum.genericName()
            genericName = Fit.model.srcs[
                FitRunner.obs.srcname].spectrum().genericName()

            varscale = None
            if genericName == "PowerLaw2":
                varscale = None
            elif genericName in [
                    "PowerLaw", "PLSuperExpCutoff",
                    "EblAtten::PLSuperExpCutoff"
            ]:
                varscale = "Scale"
            elif genericName in ["LogParabola","EblAtten::LogParabola", \
                                 "BrokenPowerLaw", "EblAtten::BrokenPowerLaw"]:
                varscale = "Eb"

            if varscale is not None:
                spectrum.getParam(varscale).setValue(sedresult.decE)
                FitRunner.PerformFit(Fit)

    #Get and dump the target specific results
    Result = FitRunner.GetAndPrintResults(Fit)
    utils.DumpResult(Result, config)

    #  Make energy bins by running a *new* analysis
    Nbin = config['Ebin']['NumEnergyBins']

    FitRunner.config['file']['parent_config'] = infile

    if config['Spectrum']['ResultParentPlots'] == "yes":
        plot_sed_fromconfig(get_config(config['file']['parent_config']),
                            ignore_missing_bins=True)

    if config['Spectrum']['ResultPlots'] == 'yes':
        outXml = utils._dump_xml(config)
        # the possibility of making the model map is checked inside the function
        FitRunner.ModelMap(outXml)
        if Nbin > 0:
            FitRunner.config['Spectrum']['ResultParentPlots'] = "yes"
        plot_sed_fromconfig(get_config(infile), ignore_missing_bins=True)

    energybin.RunEbin(folder, Nbin, Fit, FitRunner, sedresult)

    del (sedresult)
    del (Result)
    del (FitRunner)
示例#31
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'
#        ValueDC = self.GetDCValue()
        ResultDicDC = utils.ReadResult(self.config)
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                print "WARNING : fail reading the config file : ",CurConfig
                print "Job Number : ",i
                print "Please have a look at this job log file"
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            utils.FreezeParams(Fit, self.srcname, 'Index', -self.config['LightCurve']['SpectralIndex'])
            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            Model_type = Fit.model.srcs[self.srcname].spectrum().genericName()
            if (Model_type == 'PowerLaw') :
                utils.FreezeParams(Fit, self.srcname, 'Prefactor', utils.fluxNorm(ResultDicDC['Prefactor']))
            if (Model_type == 'PowerLaw2') :
                utils.FreezeParams(Fit, self.srcname, 'Integral', utils.fluxNorm(ResultDicDC['Integral']))
            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time),np.array(Time),np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time),np.array(Time),np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        #Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath+'_VarIndex.eps')
        Can.Print(LcOutPath+'_VarIndex.C')
        print 
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",ROOT.TMath.Prob(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print 
示例#32
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try :
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except :
            self.warning("No results file found; please run enrico_sed first.")
            return
        
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("Fail reading the config file ",i)
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index']  = -2.
            parameters['alpha']  = +2.
            parameters['Index1'] = -2.
            parameters['beta']   = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 30000. # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm","Prefactor","Integral"]:
                try:
                    utils.FreezeParams(Fit,self.srcname,key, utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue
            
            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory


        plt.figure()
        plt.xlabel("Time")
        plt.ylabel("Log(Like) Variability")
        plt.errorbar(Time,LogL0,fmt='o',color='black',ls='None')

        plt.savefig(LcOutPath+"_VarIndex.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        self.info("Variability index calculation") 
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",1 - chi2.cdf(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print 
示例#33
0
    def _PlotLC(self, folded=False):
        root_style.RootStyle()  #Nice plot style

        self.info("Reading files produced by enrico")
        LcOutPath = self.LCfolder + self.config['target']['name']

        #Result are stored into list. This allow to get rid of the bin which failled
        Time = []
        TimeErr = []
        Flux = []
        FluxErr = []
        Index = []
        IndexErr = []
        Cutoff = []
        CutoffErr = []
        FluxForNpred = []
        FluxErrForNpred = []
        Npred = []
        Npred_detected_indices = []
        TS = []

        # Find name used for index parameter
        if (self.config['target']['spectrum'] == 'PowerLaw'
                or self.config['target']['spectrum'] == 'PowerLaw2'):
            IndexName = 'Index'
            CutoffName = None
        elif (self.config['target']['spectrum'] == 'PLExpCutoff'
              or self.config['target']['spectrum'] == 'PLSuperExpCutoff'):
            IndexName = 'Index1'
            CutoffName = 'Cutoff'
            CutoffErrName = 'dCutoff'
        IndexErrName = 'd' + IndexName

        Nfail = 0
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("Fail reading config file", i)
                Nfail += 1
                continue

            #Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)
            TimeErr.append(
                (ResultDic.get("tmax") - ResultDic.get("tmin")) / 2.)
            #Check is an ul have been computed. The error is set to zero for the TGraph.
            if ResultDic.has_key('Ulvalue'):
                Flux.append(ResultDic.get("Ulvalue"))
                FluxErr.append(0)
                Index.append(ResultDic.get(IndexName))
                IndexErr.append(0)
            else:
                Flux.append(ResultDic.get("Flux"))
                FluxErr.append(ResultDic.get("dFlux"))
                Index.append(ResultDic.get(IndexName))
                IndexErr.append(ResultDic.get(IndexErrName))
                if CutoffName is not None:
                    Cutoff.append(ResultDic.get(CutoffName))
                    CutoffErr.append(ResultDic.get(CutoffErrName))
            FluxErrForNpred.append(ResultDic.get("dFlux"))
            FluxForNpred.append(ResultDic.get("Flux"))
            #Get the Npred and TS values
            Npred.append(ResultDic.get("Npred"))
            TS.append(ResultDic.get("TS"))
            if (CurConfig['LightCurve']['TSLightCurve'] < float(
                    ResultDic.get("TS"))):
                Npred_detected_indices.append(i - Nfail)

        #change the list into np array
        TS = np.array(TS)
        Npred = np.array(Npred)
        Npred_detected = Npred[Npred_detected_indices]
        Time = np.array(Time)
        TimeErr = np.array(TimeErr)
        Flux = np.array(Flux)
        FluxErr = np.array(FluxErr)
        Index = np.array(Index)
        IndexErr = np.array(IndexErr)
        Cutoff = np.array(Cutoff)
        CutoffErr = np.array(CutoffErr)
        FluxForNpred = np.array(FluxForNpred)
        FluxErrForNpred = np.array(FluxErrForNpred)

        #Plots the diagnostic plots is asked
        # Plots are : Npred vs flux
        #             TS vs Time
        if self.config['LightCurve']['DiagnosticPlots'] == 'yes':
            fittedFunc = self.CheckNpred(
                Npred, FluxForNpred, FluxErrForNpred,
                Npred_detected_indices)  #check the errors calculation
            gTHNpred, TgrNpred = plotting.PlotNpred(Npred, FluxForNpred,
                                                    FluxErrForNpred)
            CanvNpred = _GetCanvas()
            gTHNpred.Draw()
            TgrNpred.Draw('zP')

            _, TgrNpred_detected = plotting.PlotNpred(
                Npred_detected, Flux[Npred_detected_indices],
                FluxErrForNpred[Npred_detected_indices])
            TgrNpred_detected.SetLineColor(2)
            TgrNpred_detected.SetMarkerColor(2)
            TgrNpred_detected.Draw('zP')
            fittedFunc.Draw("SAME")

            CanvNpred.Print(LcOutPath + "_Npred.png")
            CanvNpred.Print(LcOutPath + "_Npred.eps")
            CanvNpred.Print(LcOutPath + "_Npred.C")

            gTHTS, TgrTS = plotting.PlotTS(Time, TimeErr, TS)
            CanvTS = _GetCanvas()
            gTHTS.Draw()
            TgrTS.Draw('zP')
            CanvTS.Print(LcOutPath + '_TS.png')
            CanvTS.Print(LcOutPath + '_TS.eps')
            CanvTS.Print(LcOutPath + '_TS.C')

#    Plot the LC itself. This function return a TH2F for a nice plot
#    a TGraph and a list of TArrow for the ULs
        if folded:
            phase = np.linspace(0, 1, self.Nbin + 1)
            Time = (phase[1:] + phase[:-1]) / 2.
            TimeErr = (phase[1:] - phase[:-1]) / 2.
            gTHLC, TgrLC, ArrowLC = plotting.PlotFoldedLC(
                Time, TimeErr, Flux, FluxErr)
            gTHIndex, TgrIndex, ArrowIndex = plotting.PlotFoldedLC(
                Time, TimeErr, Index, IndexErr)
            if CutoffName is not None:
                gTHCutoff, TgrCutoff, ArrowCutoff = plotting.PlotFoldedLC(
                    Time, TimeErr, Cutoff, CutoffErr)
        else:
            gTHLC, TgrLC, ArrowLC = plotting.PlotLC(Time, TimeErr, Flux,
                                                    FluxErr)
            gTHIndex, TgrIndex, ArrowIndex = plotting.PlotLC(
                Time, TimeErr, Index, IndexErr)
            if CutoffName is not None:
                gTHCutoff, TgrCutoff, ArrowCutoff = plotting.PlotFoldedLC(
                    Time, TimeErr, Cutoff, CutoffErr)

        ### plot and save the flux LC
        CanvLC = ROOT.TCanvas()
        gTHLC.Draw()
        TgrLC.Draw('zP')

        #plot the ul as arrow
        for i in xrange(len(ArrowLC)):
            ArrowLC[i].Draw()

        # compute Fvar and probability of being cst

        self.info("Flux vs Time: infos")
        self.FitWithCst(TgrLC)
        self.Fvar(Flux, FluxErr)

        #Save the canvas in the LightCurve subfolder
        CanvLC.Print(LcOutPath + '_LC.png')
        CanvLC.Print(LcOutPath + '_LC.eps')
        CanvLC.Print(LcOutPath + '_LC.C')

        ### plot and save the Index LC
        CanvIndex = ROOT.TCanvas()
        gTHIndex.Draw()
        TgrIndex.Draw('zP')

        #plot the ul as arrow
        for i in xrange(len(ArrowIndex)):
            ArrowIndex[i].Draw()

        #Save the canvas in the LightCurve subfolder
        if self.config["LightCurve"]["SpectralIndex"] == 0:
            self.info("Index vs Time")
            self.FitWithCst(TgrIndex)
            CanvIndex.Print(LcOutPath + '_Index.png')
            CanvIndex.Print(LcOutPath + '_Index.eps')
            CanvIndex.Print(LcOutPath + '_Index.C')

        if len(Cutoff) > 0:
            ### plot and save the Cutoff LC
            CanvCutoff = ROOT.TCanvas()
            gTHCutoff.Draw()
            TgrCutoff.Draw('zP')

            #plot the ul as arrow
            for i in xrange(len(ArrowCutoff)):
                ArrowCutoff[i].Draw()

            print "Cutoff vs Time: infos"
            self.FitWithCst(TgrCutoff)
            CanvCutoff.Print(LcOutPath + '_Cutoff.png')
            CanvCutoff.Print(LcOutPath + '_Cutoff.eps')
            CanvCutoff.Print(LcOutPath + '_Cutoff.C')

        #Dump into ascii
        lcfilename = LcOutPath + "_results.dat"
        self.info("Write to Ascii file : " + lcfilename)
        WriteToAscii(Time, TimeErr, Flux, FluxErr, Index, IndexErr, Cutoff,
                     CutoffErr, TS, Npred, lcfilename)

        if self.config["LightCurve"]['ComputeVarIndex'] == 'yes':
            self.VariabilityIndex()