示例#1
0
                         idx=idx)
    dmexp = deterministic_signals.Deterministic(wf, name=name)

    return dmexp


Tspan = 407576851.48121357
rn = red_noise_block(psd='powerlaw',
                     prior='log-uniform',
                     Tspan=Tspan,
                     components=30,
                     gamma_val=None)

gw = common_red_noise_block(psd='powerlaw',
                            prior='log-uniform',
                            Tspan=Tspan,
                            components=5,
                            gamma_val=4.3333)
sig = rn + gw

index = parameter.Uniform(0, 2)

ppta_dip = dm_exponential_dip(57450,
                              57560,
                              idx=index,
                              sign='negative',
                              name='exp2')

kwargs = copy.deepcopy(model_kwargs['0'])
kwargs.update({
    'red_var': False,
示例#2
0
                          'B1937+21',
                          'J0613-0200',
                          'J0645+5158',
                          'J1600-3053',
                          'J1614-2230',
                          'J1640+2224',
                          'J1713+0747',
                          'J1741+1351',
                          'J1744-1134',
                          'J2043+1711',]

    # Set Tspan for RN

    Tspan_PTA = model_utils.get_tspan(pkl_psrs)
    # common red noise block
    cs = blocks.common_red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=Tspan_PTA,
                                       components=5, gamma_val=4.33, name='gw')
    gw = blocks.common_red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=Tspan_PTA,
                                       components=5, gamma_val=4.33, name='gw', orf='hd')
    # intrinsic red noise
    s = blocks.red_noise_block(prior='log-uniform', Tspan=Tspan_PTA, components=30)
    # timing model
    s += gp_signals.TimingModel()
    # adding white-noise, separating out Adv Noise Psrs, and acting on psr objects
    final_psrs = []
    psr_models = []
    ### Add a stand alone SW deter model
    n_earth = chrom.solar_wind.ACE_SWEPAM_Parameter()('n_earth')
    deter_sw = chrom.solar_wind.solar_wind(n_earth=n_earth)
    mean_sw = deterministic_signals.Deterministic(deter_sw, name='sw')
    for psr in pkl_psrs:
        # Filter out other Adv Noise Pulsars
示例#3
0
            sign_param = -1.0
        wf = chrom.chrom_exp_decay(log10_Amp=log10_Amp_dmexp,
                                   t0=t0_dmexp,
                                   log10_tau=log10_tau_dmexp,
                                   sign_param=sign_param,
                                   idx=idx)
        dmexp = deterministic_signals.Deterministic(wf, name=name)

        return dmexp

    # Set Tspan for RN
    Tspan_PTA = model_utils.get_tspan(pkl_psrs)
    # common red noise block
    cs = blocks.common_red_noise_block(psd='powerlaw',
                                       prior='log-uniform',
                                       Tspan=Tspan_PTA,
                                       components=args.n_gwbfreqs,
                                       gamma_val=args.gamma_gw,
                                       name='gw')
    # gw = blocks.common_red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=Tspan_PTA,
    #                                    components=5, gamma_val=4.33, name='gw', orf='hd')

    # timing model
    s = gp_signals.MarginalizingTimingModel()
    # intrinsic red noise
    s += blocks.red_noise_block(prior='log-uniform',
                                Tspan=Tspan_PTA,
                                components=30)
    # adding white-noise, separating out Adv Noise Psrs, and acting on psr objects
    final_psrs = []
    psr_models = []
    ### Add a stand alone SW deter model
示例#4
0
rn_plaw = blocks.red_noise_block(psd='powerlaw',
                                 prior='log-uniform',
                                 Tspan=Tspan,
                                 components=30,
                                 gamma_val=None)

rn_fs = blocks.red_noise_block(psd='spectrum',
                               prior='log-uniform',
                               Tspan=Tspan,
                               components=30,
                               gamma_val=None)

### GWB ###
gw = blocks.common_red_noise_block(psd='powerlaw',
                                   prior='log-uniform',
                                   Tspan=Tspan,
                                   gamma_val=None,
                                   name='gw')

base_model = tm + wn + gw

if args.bayes_ephem:
    base_model += deterministic_signals.PhysicalEphemerisSignal(
        use_epoch_toas=True)

model_plaw = base_model + rn_plaw
model_fs = base_model + rn_fs

model_list = []
noise = {}
for psr in psrs: