from examples.utils.utils import get_policy tensorboard_folder = './tensorboard/MouseWalkingMaze/base/' model_folder = './models/MouseWalkingMaze/base/' if not os.path.isdir(tensorboard_folder): os.makedirs(tensorboard_folder) if not os.path.isdir(model_folder): os.makedirs(model_folder) policy = '' model_tag = '' if len(sys.argv) > 1: policy = sys.argv[1] model_tag = '_' + sys.argv[1] env = DummyVecEnv([lambda: BaseEnv()]) model = PPO2(get_policy(policy), env, verbose=0, nminibatches=1, tensorboard_log=tensorboard_folder) model.learn(total_timesteps=25000, tb_log_name='PPO2' + model_tag) model.save(model_folder + "PPO2" + model_tag) del model model = PPO2.load(model_folder + "PPO2" + model_tag) done = False states = None obs = env.reset()
from examples.utils.utils import get_policy tensorboard_folder = './tensorboard/MouseWalkingMaze/base/' model_folder = './models/MouseWalkingMaze/base/' if not os.path.isdir(tensorboard_folder): os.makedirs(tensorboard_folder) if not os.path.isdir(model_folder): os.makedirs(model_folder) policy = '' model_tag = '' if len(sys.argv) > 1: policy = sys.argv[1] model_tag = '_' + sys.argv[1] env = DummyVecEnv([lambda: BaseEnv(map_name='map1')]) model = A2C(get_policy(policy), env, verbose=0, tensorboard_log=tensorboard_folder) model.learn(total_timesteps=2500000, tb_log_name='A2C_map1' + model_tag) model.save(model_folder + "A2C_map1" + model_tag) del model model = A2C.load(model_folder + "A2C_map1" + model_tag) done = False states = None obs = env.reset()
def setup_function(): pytest.env = BaseEnv(map_name='map1', end_step=100)