示例#1
0
def test(num_episodes: int, game_interface: HFOAttackingPlayer,
         features: discrete_features_v2.DiscreteFeaturesV2,
         agent: QLearningAgentV5, actions: DiscreteActionsV5, reward_funct):
    """
    @param num_episodes: number of episodes to run
    @param game_interface: game interface, that manages interactions
    between both;
    @param features: features interface, from the observation array, gets the
    main features for the agent;
    @param agent: learning agent;
    @param actions: actions interface;
    @param reward_funct: reward function used
    @return: (int) the avarage reward
    """
    # Run training using Q-Learning
    sum_score = 0
    for ep in range(num_episodes):
        print('<Test> {}/{}:'.format(ep, num_episodes))
        # Go to origin position:
        features.update_features(game_interface.get_state())
        go_to_origin_position(game_interface=game_interface,
                              features=features,
                              actions=actions)
        # Test loop:
        while game_interface.in_game():
            # Update environment features:
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()

            # Act:
            action_idx = agent.exploit_actions(curr_state_id)
            hfo_action_params, num_rep = \
                actions.map_action_idx_to_hfo_action(
                    agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                    action_idx=action_idx)

            action_name = actions.map_action_to_str(action_idx, has_ball)

            # Step:
            rep_counter_aux = 0
            while game_interface.in_game() and rep_counter_aux < num_rep:
                status, observation = game_interface.step(
                    hfo_action_params, has_ball)
                rep_counter_aux += 1
            reward = reward_funct(status)

            # update features:
            features.update_features(observation)

            # Save metrics:
            agent.save_visited_state(curr_state_id, action_idx)
            sum_score += reward

        # Reset player:
        agent.reset(training=False)
        # Game Reset
        game_interface.reset()
    return sum_score / num_episodes
示例#2
0
def train(num_episodes: int, game_interface: HFOAttackingPlayer,
          features: discrete_features_v2.DiscreteFeaturesV2,
          agent: QLearningAgentV4, actions: DiscreteActionsV2, reward_funct):
    for ep in range(num_episodes):
        # print('<Training> Episode {}/{}:'.format(ep, num_episodes))
        aux_positions_names = set()
        aux_actions_played = set()
        while game_interface.in_game():
            # Update environment features:
            features.update_features(game_interface.get_state())
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()
            
            # Act:
            action_idx = agent.act(curr_state_id)
            hfo_action: tuple = actions.map_action_idx_to_hfo_action(
                agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                action_idx=action_idx)
            
            # Step:
            status, observation = game_interface.step(hfo_action, has_ball)
            reward = reward_funct(status)
            
            # Save metrics:
            agent.save_visited_state(curr_state_id, action_idx)
            agent.cum_reward += reward
            aux_positions_names.add(features.get_position_name())
            action_name = actions.map_action_to_str(action_idx, has_ball)
            aux_actions_played.add(action_name)
            
            # Update environment features:
            prev_state_id = curr_state_id
            features.update_features(observation)
            curr_state_id = features.get_state_index()
            agent.store_ep(state_idx=prev_state_id, action_idx=action_idx,
                           reward=reward, next_state_idx=curr_state_id,
                           has_ball=has_ball, done=not game_interface.in_game())
        agent.learn()
        # print(':: Episode: {}; reward: {}; epsilon: {}; positions: {}; '
        #       'actions: {}'.format(ep, agent.cum_reward, agent.epsilon,
        #                            aux_positions_names, aux_actions_played))
        agent.save_metrics(agent.old_q_table, agent.q_table)
        # Reset player:
        agent.reset()
        agent.update_hyper_parameters(episode=ep,
                                      num_total_episodes=num_episodes)
        # Game Reset
        game_interface.reset()
    agent.save_model()
    actions_name = [actions_manager.map_action_to_str(i, has_ball=True) for i in
                    range(agent.num_actions)]
    agent.export_metrics(training=True, actions_name=actions_name)
示例#3
0
def go_to_origin_position(game_interface: HFOAttackingPlayer,
                          features: discrete_features_v2.DiscreteFeaturesV2,
                          actions: DiscreteActionsV5,
                          random_start: bool = True):
    if random_start:
        pos_name, origin_pos = random.choice(list(ORIGIN_POSITIONS.items()))
    else:
        pos_name = "Fixed start"
        origin_pos = features.get_pos_tuple()
    print("\nMoving to starting point: {0}".format(pos_name))
    pos = features.get_pos_tuple(round_ndigits=1)
    while origin_pos != pos:
        has_ball = features.has_ball()
        hfo_action: tuple = actions.dribble_to_pos(origin_pos)
        status, observation = game_interface.step(hfo_action, has_ball)
        features.update_features(observation)
        pos = features.get_pos_tuple(round_ndigits=1)
示例#4
0
def test(train_ep: int, num_episodes: int, game_interface: HFOAttackingPlayer,
         features: discrete_features_v2.DiscreteFeaturesV2,
         agent: QLearningAgentV4, actions: DiscreteActionsV2, reward_funct):
    # Run training using Q-Learning
    score = 0
    agent.test_episodes.append(train_ep)
    for ep in range(num_episodes):
        print('<Test> {}/{}:'.format(ep, num_episodes))
        prev_state_id =-1
        while game_interface.in_game():
            # Update environment features:
            features.update_features(game_interface.get_state())
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()

            # Act:
            if prev_state_id != curr_state_id:
                print([round(val, 2) for val in agent.q_table[curr_state_id]])
            action_idx = agent.exploit_actions(curr_state_id)
            hfo_action: tuple = actions.map_action_idx_to_hfo_action(
                agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                action_idx=action_idx)
            
            # Step:
            status, observation = game_interface.step(hfo_action, has_ball)
            prev_state_id = curr_state_id
            
            # Save Metrics:
            agent.save_visited_state(curr_state_id, action_idx)
            agent.cum_reward += reward_funct(status)
        print(':: Episode: {}; reward: {}'.format(ep, agent.cum_reward))
        score += 1 if game_interface.status == GOAL else 0
        # Reset player:
        agent.reset(training=False)
        # Game Reset
        game_interface.reset()
    agent.scores.append(score)
    actions_name = [actions_manager.map_action_to_str(i, has_ball=True) for i in
                    range(agent.num_actions)]
    agent.export_metrics(training=False, actions_name=actions_name)
示例#5
0
def train(num_train_episodes: int, num_total_train_ep: int,
          game_interface: HFOAttackingPlayer,
          features: discrete_features_v2.DiscreteFeaturesV2,
          agent: QLearningAgentV5, actions: DiscreteActionsV5,
          save_metrics: bool, reward_funct):
    """
    @param num_train_episodes: number of episodes to train in this iteration
    @param num_total_train_ep: number total of episodes to train
    @param game_interface: game interface, that manages interactions
    between both;
    @param features: features interface, from the observation array, gets
    the main features for the agent;
    @param agent: learning agent;
    @param actions: actions interface;
    @param save_metrics: flag, if true save the metrics;
    @param reward_funct: reward function used
    @return: (QLearningAgentV5) the agent
    """
    for ep in range(num_train_episodes):
        # Go to origin position:
        features.update_features(game_interface.get_state())
        go_to_origin_position(game_interface=game_interface,
                              features=features,
                              actions=actions)
        # Start learning loop
        aux_positions_names = set()
        aux_actions_played = set()
        while game_interface.in_game():
            # Update environment features:
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()

            # Act:
            action_idx = agent.act(curr_state_id)
            hfo_action_params, num_rep =\
                actions.map_action_idx_to_hfo_action(
                    agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                    action_idx=action_idx)

            # Step:
            rep_counter_aux = 0
            while game_interface.in_game() and rep_counter_aux < num_rep:
                status, observation = game_interface.step(
                    hfo_action_params, has_ball)
                rep_counter_aux += 1
            reward = reward_funct(status)

            # Save metrics:
            if save_metrics:
                agent.save_visited_state(curr_state_id, action_idx)
                agent.cum_reward += reward
                aux_positions_names.add(features.get_position_name())
                action_name = actions.map_action_to_str(action_idx, has_ball)
                aux_actions_played.add(action_name)

            # Update environment features:
            prev_state_id = curr_state_id
            features.update_features(observation)
            curr_state_id = features.get_state_index()
            agent.store_ep(state_idx=prev_state_id,
                           action_idx=action_idx,
                           reward=reward,
                           next_state_idx=curr_state_id,
                           has_ball=has_ball,
                           done=not game_interface.in_game())
        agent.learn()
        # print(':: Episode: {}; reward: {}; epsilon: {}; positions: {}; '
        #       'actions: {}'.format(ep, agent.cum_reward, agent.epsilon,
        #                            aux_positions_names, aux_actions_played))
        if save_metrics:
            agent.save_metrics(agent.old_q_table, agent.q_table)
        # Reset player:
        agent.reset()
        agent.update_hyper_parameters(episode=agent.train_eps,
                                      num_total_episodes=num_total_train_ep)
        # Game Reset
        game_interface.reset()
    agent.save_model()
    if save_metrics:
        actions_name = [
            actions_manager.map_action_to_str(i, has_ball=True)
            for i in range(agent.num_actions)
        ]
        agent.export_metrics(training=True, actions_name=actions_name)
    return agent
示例#6
0
def test(num_episodes: int, game_interface: HFOAttackingPlayer,
         features: DiscreteFeaturesV2, agent: QLearningAgentV6,
         actions: DiscreteActionsV5, reward_funct) -> float:
    """
    @param num_episodes: number of episodes to run
    @param game_interface: game interface, that manages interactions
    between both;
    @param features: features interface, from the observation array, gets the
    main features for the agent;
    @param agent: learning agent;
    @param actions: actions interface;
    @param reward_funct: reward function used
    @return: (float) the average reward
    """
    # Run training using Q-Learning
    sum_score = 0
    for ep in range(num_episodes):
        # Check if server still up:
        if game_interface.hfo.step() == SERVER_DOWN:
            print("Server is down while testing; episode={}".format(ep))
            break
        # Go to origin position:
        features.update_features(game_interface.get_state())
        go_to_origin_position(game_interface=game_interface,
                              features=features,
                              actions=actions)
        # Test loop:
        debug_counter = 0  # TODO remove
        while game_interface.in_game():
            # Update environment features:
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()

            # Act:
            debug_counter += 1
            action_idx = agent.exploit_actions(curr_state_id)
            hfo_action_params, num_rep = \
                actions.map_action_idx_to_hfo_action(
                    agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                    action_idx=action_idx)

            # Step:
            status, observation = execute_action(
                action_params=hfo_action_params,
                repetitions=num_rep,
                has_ball=has_ball,
                game_interface=game_interface)

            # update features:
            reward = reward_funct(status)
            features.update_features(observation)
            sum_score += reward

        if status == OUT_OF_TIME:
            if debug_counter < 5:
                raise NoActionPlayedError(
                    "agent was only able to choose {}".format(debug_counter))
        # Game Reset
        game_interface.reset()
    print("<<TEST>> AVR reward = ", sum_score / (ep + 1))
    return sum_score / num_episodes
示例#7
0
def train(num_train_episodes: int, num_total_train_ep: int,
          game_interface: HFOAttackingPlayer, features: DiscreteFeaturesV2,
          agent: QLearningAgentV6, actions: DiscreteActionsV5, reward_funct):
    """
    @param num_train_episodes: number of episodes to train in this iteration
    @param num_total_train_ep: number total of episodes to train
    @param game_interface: game interface, that manages interactions
    between both;
    @param features: features interface, from the observation array, gets
    the main features for the agent;
    @param agent: learning agent;
    @param actions: actions interface;
    @param reward_funct: reward function used
    @return: (QLearningAgentV5) the agent
    """
    sum_score = 0
    sum_epsilons = 0
    agent.counter_explorations = 0
    agent.counter_exploitations = 0
    for ep in range(num_train_episodes):
        # Check if server still up:
        # if game_interface.hfo.step() == SERVER_DOWN:
        #     raise ServerDownError("training; episode={}".format(ep))
        # Go to origin position:
        features.update_features(game_interface.get_state())
        go_to_origin_position(game_interface=game_interface,
                              features=features,
                              actions=actions)
        # Start learning loop
        debug_counter = 0  # TODO remove
        while game_interface.in_game():
            # Update environment features:
            curr_state_id = features.get_state_index()
            has_ball = features.has_ball()

            # Act:
            debug_counter += 1
            action_idx = agent.act(curr_state_id)
            hfo_action_params, num_rep =\
                actions.map_action_idx_to_hfo_action(
                    agent_pos=features.get_pos_tuple(), has_ball=has_ball,
                    action_idx=action_idx)

            # Step:
            status, observation = execute_action(
                action_params=hfo_action_params,
                repetitions=num_rep,
                has_ball=has_ball,
                game_interface=game_interface)

            # Update environment features:
            reward = reward_funct(status)
            sum_score += reward
            features.update_features(observation)
            new_state_id = features.get_state_index()
            agent.store_ep(state_idx=curr_state_id,
                           action_idx=action_idx,
                           reward=reward,
                           next_state_idx=new_state_id,
                           has_ball=has_ball,
                           done=not game_interface.in_game())
        if status == OUT_OF_TIME:
            if debug_counter < 5:
                raise NoActionPlayedError(
                    "agent was only able to choose {}".format(debug_counter))
        agent.learn_buffer()
        agent.update_hyper_parameters(num_total_episodes=num_total_train_ep)
        sum_epsilons += agent.epsilon
        # Game Reset
        game_interface.reset()
    print("<<TRAIN>> AVR reward = ", sum_score / num_train_episodes)
    print("<<TRAIN>> %Explorations={}% ".format(
        round(
            (agent.counter_explorations /
             (agent.counter_exploitations + agent.counter_explorations)), 4) *
        100))