示例#1
0
def plot_visited(env, visited):
    plt.ion()
    fig = e.plot_environment(env)
    axes = fig.gca()
    for i in range(len(visited)):
        e.plot_environment(env, fig=fig)
        for obstacle in visited[i].obstacles:
            axes.add_artist(obstacle.get_circle('b'))
        plt.draw()
        input()
    plt.ioff()
示例#2
0
def plot_rrt(env, bounds, path, vertices, parents, radius, start_pose,
             end_region, time):
    ax = plot_environment(env, bounds=bounds)
    plot_poly(ax, Point(start_pose).buffer(radius, resolution=3), 'magenta')
    plot_poly(ax, end_region, 'brown', alpha=0.2)

    # plot the full tree
    for v in vertices:
        if v in parents:
            x, y = LineString([parents[v], v]).xy
            ax.plot(x,
                    y,
                    color='blue',
                    linewidth=1,
                    solid_capstyle='round',
                    zorder=1)

    # plot the final path
    for i in range(1, len(path)):
        x, y = LineString([path[i - 1], path[i]]).xy
        ax.plot(x,
                y,
                color='green',
                linewidth=3,
                solid_capstyle='round',
                zorder=1)

    # tree nodes, time, num obs, path length (nodes)
    pathLength = getPathLength(path)
    plt.title(
        'Nodes: %d Time: %.3f sec Obstacles: %d Path Length: %.3f (%d nodes)' %
        (len(vertices), time, len(env.obstacles), pathLength, len(path)))
    plt.show()
示例#3
0
def debug_plot(env, bounds, vertices, parents, start_pose, end_region):
    ax = plot_environment(env, bounds=bounds)
    plot_poly(ax, Point(start_pose).buffer(radius, resolution=3), 'magenta')
    plot_poly(ax, end_region, 'brown', alpha=0.2)

    for v in vertices:
        if v in parents:
            plot_line(ax, LineString([parents[v], v]))
    plt.show()
示例#4
0
    def plot_env(self):
        """ Plot the environment, including static obstacles but excluding
            agents and RRT trees.

            Returns:
                ax: the plot object
        """
        ax = plot_environment(self.env)
        ax.set_title("Multiagent Planner")
        return ax
示例#5
0
def draw_results(algo_name, path, V, E, env, bounds, object_radius, resolution, start_pose, goal_region, elapsed_time):
    """
    Plots the path from start node to goal region as well as the graph (or tree) searched with the Sampling Based Algorithms.

    Args:
        algo_name (str): The name of the algorithm used (used as title of the plot)
        path (list<(float,float), (float,float)>): The sequence of coordinates traveled to reach goal from start node
        V (set<(float, float)>): All nodes in the explored graph/tree
        E (set<(float,float), (float, float)>): The set of all edges considered in the graph/tree
        env (yaml environment): 2D yaml environment for the path planning to take place
        bounds (int, int int int): min x, min y, max x, max y of the coordinates in the environment.
        object_radius (float): radius of our object.
        resolution (int): Number of segments used to approximate a quarter circle around a point.
        start_pose(float,float): Coordinates of initial point of the path.
        goal_region (Polygon): A polygon object representing the end goal.
        elapsed_time (float): Time it took for the algorithm to run

    Return:
        None

    Action:
        Plots a path using the environment module.
    """
    originalPath,pruningPath=path
    graph_size = len(V)
    path_size = len(originalPath)
    # Calculate path length
    path_length1 = 0.0
    path_length2 = 0.0
    for i in range(len(originalPath)-1):
        path_length1 += euclidian_dist(originalPath[i], originalPath[i+1])
    for i in range(len(pruningPath)-1):
        path_length2 += euclidian_dist(pruningPath[i], pruningPath[i+1])

    # Create title with descriptive information based on environment, path length, and elapsed_time
    title = algo_name + "\n" + str(graph_size) + " Nodes. " + str(len(env.obstacles)) + " Obstacles. Path Size: " + str(path_size) + "\n Path Length: " + str([path_length1,path_length2]) + "\n Runtime(s)= " + str(elapsed_time)

    # Plot environment
    env_plot = plot_environment(env, bounds)
    # Add title
    env_plot.set_title(title)
    # Plot goal
    plot_poly(env_plot, goal_region, 'green')
    # Plot start
    buffered_start_vertex = Point(start_pose).buffer(object_radius, resolution)
    plot_poly(env_plot, buffered_start_vertex, 'red')

    # Plot Edges explored by ploting lines between each edge
    for edge in E:
        line = LineString([edge[0], edge[1]])
        plot_line(env_plot, line)

    # Plot path
    plot_path(env_plot, originalPath, object_radius,'black')
    plot_path(env_plot, pruningPath, object_radius,'red')
示例#6
0
def plot_one_step(env, x_ref, x_bar, x_opt, x_next=None, nominals=None):
    ''' Plots a single step of trajectory optimization in environment '''
    fig, ax = environment.plot_environment(env, figsize=(16, 10))
    ax.plot(x_ref[0, :], x_ref[1, :], '-o', alpha=0.8,
            color='blue', markersize=3, label='reference trajectory')
    if nominals is not None:
        for nom in nominals:
            ax.plot(nom[0, :], nom[1, :], 'r-', label='nominal trajectories')
    else:
        ax.plot(x_bar[0, :], x_bar[1, :], 'r-', label='nominal trajectory')
    ax.plot(x_opt[0, :], x_opt[1, :], '-o',
            color='lightseagreen', label='optimal trajectory')
    if x_next is not None:
        ax.plot(x_next[0], x_next[1], 'o', color='blueviolet', label='next x0')

    handles, labels = plt.gca().get_legend_handles_labels()
    labels, ids = np.unique(labels, return_index=True)
    handles = [handles[i] for i in ids]
    ax.legend(handles, labels, loc='best')
    return fig, ax
示例#7
0
def plot_all_steps(env, x_ref_full, history):
    ''' Plots optimization paths in environment at each step over time
        course of the full MPC run
    '''
    fig, ax = environment.plot_environment(env, figsize=(16, 10))
    ax.plot(x_ref_full[0, :], x_ref_full[1, :],
            '-o', color='blue', label='reference trajectory', markersize=3)
    for i in range(len(history.keys())):
        xi = history[i]['x_opt']
        ax.plot(xi[0, :], xi[1, :], color='lightseagreen',
                linewidth=1, label='N-step optimal traj')
    x0x = [history[i]['x0'][0] for i in history.keys()]
    x0y = [history[i]['x0'][1] for i in history.keys()]
    ax.plot(x0x, x0y, '-o', color='blueviolet', label='actual trajectory')
    xf_bar = history[len(history.keys())-1]['x_bar']
    # ax.plot(xf_bar[0, :], xf_bar[1, :], 'r', label='xf_bar')
    ax.axis('equal')
    handles, labels = plt.gca().get_legend_handles_labels()
    labels, ids = np.unique(labels, return_index=True)
    handles = [handles[i] for i in ids]
    ax.legend(handles, labels, loc='best')
    return fig, ax
示例#8
0
def draw_results(algo_name, path, V, E, env, bounds, object_radius, resolution,
                 start_pose, goal_region, elapsed_time):
    graph_size = len(V)
    path_size = len(path)
    path_length = 0.0
    for i in xrange(len(path) - 1):
        path_length += euclidian_dist(path[i], path[i + 1])

    title = algo_name + "\n" + str(graph_size) + " Nodes. " + str(
        len(env.obstacles)) + " Obstacles. Path Size: " + str(
            path_size) + "\n Path Length: " + str(
                path_length) + "\n Runtime(s)= " + str(elapsed_time)

    env_plot = plot_environment(env, bounds)
    env_plot.set_title(title)
    plot_poly(env_plot, goal_region, 'green')
    buffered_start_vertex = Point(start_pose).buffer(object_radius, resolution)
    plot_poly(env_plot, buffered_start_vertex, 'red')

    for edge in E:
        line = LineString([edge[0], edge[1]])
        plot_line(env_plot, line)

    plot_path(env_plot, path, object_radius)
示例#9
0
def animate(env, ctrl_pts, bc_headings, v, dt, x_ref, history, rect=False):

    fig, ax = environment.plot_environment(env, figsize=(16, 10))
    xs = x_ref[0, :]
    ys = x_ref[1, :]
    x0s = [history[i]['x0'][0] for i in history.keys()]
    y0s = [history[i]['x0'][1] for i in history.keys()]

    # plot reference trajectory
    ax.plot(xs, ys, '-o', alpha=0.8, markersize=3,
            color='blue', label='reference trajectory')
    # optimized trajectory
    opt_line, = ax.plot([], [], '-o', lw=3, color='lightseagreen',
                        label='N-step optimal traj')
    nom_line, = ax.plot([], [], color='red', label='nominal trajectory')
    act_line, = ax.plot([], [], '-o', lw=3, markersize=6,
                        color='blueviolet', label='actual trajectory')

    if rect:
        ld, wd = 0.5, 0.2
        a2 = np.arctan2(wd, ld)
        diag = np.sqrt(ld**2 + wd**2)
        heading = np.rad2deg(np.arctan2((y0s[1]-y0s[0]), (x0s[1]-x0s[0])))
        car = patches.Rectangle(
            (x0s[0]-ld, y0s[0]-wd), 2*ld, 2*wd, angle=-heading, fc='none', lw=1, ec='k')

    def init():
        opt_line.set_data([], [])
        act_line.set_data([], [])
        nom_line.set_data([], [])
        if rect:
            ax.add_patch(car)
        return opt_line,

    def step(i):
        x = history[i]['x_opt'][0]
        y = history[i]['x_opt'][1]
        xbar = history[i]['x_bar'][0]
        ybar = history[i]['x_bar'][1]
        opt_line.set_data(x, y)
        act_line.set_data(x0s[:i], y0s[:i])
        nom_line.set_data(xbar, ybar)
        if rect:
            if (len(x) == 1):
                heading = bc_headings[1]
            else:
                heading = np.arctan2((y[1]-y[0]), (x[1]-x[0]))
            xoff = diag*np.cos(heading + a2)
            yoff = diag*np.sin(heading + a2)
            car.set_xy((x[0] - xoff, y[0] - yoff))
            car.angle = np.rad2deg(heading)

        return opt_line,

    anim = animation.FuncAnimation(fig, step, init_func=init,
                                   frames=len(history.keys()), interval=1000*dt*2, blit=True)

    ax.axis('equal')
    ax.legend()
    plt.close()
    return anim
示例#10
0
def rrt(bounds, environment, start_pose, radius, end_region):
    '''
    - bounds: (minx, miny, maxx, maxy) tuple over region
    - environment: instance of the Environment class that describes the placement of the obstacles in the scene
    - start_pose: start_pose = (x,y) is a tuple indicating the starting position of the robot
    - radius: radius is the radius of the robot (used for collision checking)
    - end_region: end_region is a shapely Polygon that describes the region that the robot needs to reach
    '''

    # Adding tuples to nodes -> represent all nodes expanded by tree
    nodes = [start_pose]

    # Creating graph of SearchNodes from the tuples to represent the tree with parents. Used to order and
    graph = Graph()
    graph.add_node(SearchNode(start_pose))
    goalPath = Path(
        SearchNode(start_pose))  # for initialization in case of no path found

    # Draw the environment (with its obstacles) and with the start node + end region
    if plotting:
        ax = plot_environment(environment, bounds)
        plot_poly(ax, Point(start_pose).buffer(radius, resolution=3), 'blue')
        plot_poly(ax, end_region, 'red', alpha=0.2)

    for i in range(10000):  # random high number
        # this range must be evaluated according to size of problem. RRT do not ensure any solution paths

        # sample a random node inside bounds (random number between xmin/max and ymin/max). all bound-"checking" is donw here: makes sure we don't have to do ant checks later
        rand_xval = random.uniform(bounds[0], bounds[2])
        rand_yval = random.uniform(bounds[1], bounds[3])
        node_rand = (rand_xval, rand_yval)
        '''
        --- For every x'th iteration - aim towards goal. A good choice varies, and depends on the step length that I decided in steerpath(). Not having this makes total number of nodes blow up. I have kept choices of when to goal bias and the travel distance in steering function to perform well in large environments. TODO: This number depends on complexity of space. Easy space: lower number
        --- Then, find out which node in our list that is the nearest to the random node. Returns a searchNode and a float distance.
        --- Steer towards the new node -> correct parents and add cost
        --- Check if the new steered node is in bounds.
        --- If not visited before (avoid cycle) and no obstacles are in the path: add to tree
        '''

        sampling_rate = 12
        if not (i % sampling_rate):
            node_rand = end_region.centroid.coords[0]

        node_nearest, node_dist = nearestSNode(graph, node_rand)

        ## TODO: this steering function should somehow consider dynamics
        steered_node = steerPath(node_nearest.state, node_rand)

        if not (bounds[0] < steered_node[0] <
                bounds[2]) or not (bounds[1] < steered_node[1] < bounds[3]):
            continue  # sometimes not checking for this made the path go out of bounds

        node_steered = SearchNode(steered_node, node_nearest,
                                  node_nearest.cost + node_dist)

        if node_steered.state not in nodes:
            if not obstacleIsInPath(node_nearest.state, node_steered.state,
                                    environment, radius):

                # Keep track of total number of nodes in tree
                # Add edge (also adds new nodes to graph) and weight
                # Plot non-colliding edge to show all searched nodes
                nodes.append(node_steered.state)
                graph.add_edge(node_nearest, node_steered, node_dist)

                if plotting:
                    line = LineString([node_nearest.state, node_steered.state])
                    plot_line_mine(ax, line)

            else:
                continue  # Avoid goal check if collision is found

        # Check last addition for goal state
        # TODO: ADDED EXTRA SAFETY IN GOAL CHECK
        if goalReached(node_steered.state, 1.5 * radius, end_region):
            goalPath = Path(node_steered)
            break  # break the while loop when solution is found!

    # No. of nodes in total - No. of nodes in sol path - Sol path length
    noOfTotalNodes = len(nodes)
    noOfNodesInSol = len(goalPath.path)
    pathLength = goalPath.cost

    if plotting:
        for i in range(noOfNodesInSol - 1):
            # Draw goal path
            line = LineString([goalPath.path[i], goalPath.path[i + 1]])
            plot_line_mine(ax, line)

            # Draw the expanded line
            expanded_line = line.buffer(radius, resolution=3)
            plot_poly(ax, expanded_line, 'green', alpha=0.2)

            # plotting last node in goalPath and setting title to format in task
            plot_poly(ax,
                      Point(goalPath.path[-1]).buffer(radius, resolution=3),
                      'blue')
            titleString = "Nodes total / in solution path: %s/ %s \nPath length: %0.3f"
            ax.set_title(titleString %
                         (noOfTotalNodes, noOfNodesInSol, pathLength))

    return goalPath.path
示例#11
0
def path_to_wp(waypoints,
               wp_index,
               init_triplet,
               env,
               wp_radii,
               fig=None,
               neighbour_func=lambda c, n, s: c.quadruplet_distance(n, s),
               scope_range=50,
               deadends=None):
    """
    This implements a simple A*-search, using the cost_to_move()
    and heuristic_cost() functions to find g and h values, respectively.
    Returns a list of triplets that the snake will move through.

    TODO:
    Catch when it is unable to complete and physically backtrack, marking the current path unfeasible
    Investigate why some triplets have no parents
    tests
    """
    plt.ion()
    deadends = deadends if deadends else {}
    previous_wp = waypoints[wp_index - 1]
    wp = waypoints[wp_index]
    max_dist = wp_radii[wp_index]
    visited = []  # Closed set
    seen = []
    queue = []  # Open set
    heappush(queue, init_triplet)
    current = None
    found = False
    active_triplet = init_triplet
    init_triplet.is_first_in_path = True
    print(active_triplet)
    active = init_triplet.obstacles[2]
    iteration = 1
    wps_left = 0
    while True:
        while queue:
            current = heappop(queue)
            visited.append(current)
            if fig is not None:
                ax = fig.gca()
                ax.clear()
                fig = e.plot_environment(env, fig=fig)
                fig = plot_desired_path(waypoints, 'g', wp_radii, fig=fig)
                fig = plot_active_segment(previous_wp,
                                          wp,
                                          'm',
                                          wp_radii,
                                          path=create_path(current),
                                          fig=fig)
                circle = plt.Circle((active.x, active.y), 4, color='black')
                circle2 = plt.Circle((active.x, active.y),
                                     scope_range,
                                     fill=False,
                                     color='yellow')
                ax.add_artist(circle)
                ax.add_artist(circle2)
                plt.draw()
                plt.pause(.001)
            # Check if we have reached our goal, and end if we have
            if wp.distance_to(
                    Point(current.obstacles[2].x,
                          current.obstacles[2].y)) <= max_dist:
                found = True
                while wps_left > 0:
                    current = path_to_wp(waypoints, wp_index + 1, current, env,
                                         wp_radii, fig, neighbour_func,
                                         scope_range, deadends)
                    wps_left -= 1
                break

            if active.distance_to(current.obstacles[2]) > scope_range:
                previous_active = active
                active_triplet = new_active(current, active)
                active = active_triplet.obstacles[2]
                queue = filter_queue(queue, active, previous_active)

            add_neighbors_to_queue(init_triplet, current, queue, visited, seen,
                                   previous_wp, wp, neighbour_func, deadends)

        if not found:
            print("No path found, backtracking")
            if active_triplet.parent is None:
                return None
            if active.id not in active_triplet.parent.deadend:
                deadends[active_triplet.parent] = deadends.get(
                    active_triplet.parent, []) + [active.id]
            print("Active id: ", active.id)
            print("Current parent deadend = ",
                  deadends.get(active_triplet.parent, []))
            if active_triplet.is_first_in_path:
                active_triplet.is_first_in_path = False
                wp_index -= 1
                previous_wp = waypoints[wp_index - 1]
                wp = waypoints[wp_index]
                wps_left += 1
            active_triplet = current.parent
            active = active_triplet.obstacles[2]
            current = active_triplet
            add_neighbors_to_queue(init_triplet, current, queue, visited, seen,
                                   previous_wp, wp, neighbour_func, deadends)
            continue
        break

    plt.ioff()
    return current