示例#1
0
    def q(self, state, status):
        """ Get q values for all actions for a certain state. """
        if type(state) == np.ndarray:
            state = tuple(state.flatten() + [Status.status_to_int(status)])

        return np.array([
            self.Q.get((state, action), 0.0)
            for action in self.environment.actions
        ])
示例#2
0
    def train(self, stop_at_convergence=False, **kwargs):
        """ Train the model.

            :param stop_at_convergence: stop training as soon as convergence is reached

            Hyperparameters:
            :keyword float discount: (gamma) preference for future rewards (0 = not at all, 1 = only)
            :keyword float exploration_rate: (epsilon) 0 = preference for exploring (0 = not at all, 1 = only)
            :keyword float exploration_decay: exploration rate reduction after each random step (<= 1, 1 = no at all)
            :keyword float learning_rate: (alpha) preference for using new knowledge (0 = not at all, 1 = only)
            :keyword float eligibility_decay: (lambda) eligibility trace decay rate per step (0 = no trace, 1 = no decay)
            :keyword int episodes: number of training games to play
            :return int, datetime: number of training episodes, total time spent
        """
        discount = kwargs.get("discount", 0.90)
        exploration_rate = kwargs.get("exploration_rate", 0.10)
        exploration_decay = kwargs.get(
            "exploration_decay",
            0.995)  # % reduction per step = 100 - exploration decay
        learning_rate = kwargs.get("learning_rate", 0.10)
        eligibility_decay = kwargs.get("eligibility_decay",
                                       0.80)  # = 20% reduction
        episodes = max(kwargs.get("episodes", 1000), 1)
        check_convergence_every = kwargs.get(
            "check_convergence_every", self.default_check_convergence_every)

        # variables for reporting purposes
        cumulative_reward = 0
        cumulative_reward_history = []
        win_history = []

        start_list = list()
        start_time = datetime.now()

        # training starts here
        for episode in range(1, episodes + 1):
            # optimization: make sure to start from all possible cells
            if not start_list:
                start_list = self.environment.empty.copy()
            start_cell = random.choice(start_list)
            start_status = status = self.environment.status()
            start_list.remove(start_cell)

            state = self.environment.reset(start_cell)
            state = tuple(
                state.flatten() + [Status.status_to_int(start_status)]
            )  # change np.ndarray to tuple so it can be used as dictionary key

            etrace = dict()

            while True:
                if np.random.random() < exploration_rate:
                    action = random.choice(self.environment.actions)
                else:
                    action = self.predict(state, status)

                try:
                    etrace[(state, action)] += 1
                except KeyError:
                    etrace[(state, action)] = 1

                next_state, reward, status = self.environment.step(action)
                next_state = tuple(next_state.flatten() +
                                   [Status.status_to_int(status)])

                cumulative_reward += reward

                if (state, action) not in self.Q.keys(
                ):  # ensure value exists for (state, action) to avoid a KeyError
                    self.Q[(state, action)] = 0.0

                max_next_Q = max([
                    self.Q.get((next_state, a), 0.0)
                    for a in self.environment.actions
                ])

                # update Q's in trace
                delta = reward + discount * max_next_Q - self.Q[(state,
                                                                 action)]

                for key in etrace.keys():
                    self.Q[key] += learning_rate * delta * etrace[key]

                # decay eligibility trace
                for key in etrace.keys():
                    etrace[key] *= (discount * eligibility_decay)

                if status in (
                        Status.WIN,
                        Status.LOSE):  # terminal state reached, stop episode
                    break

                state = next_state

                self.environment.render_q(self)

            cumulative_reward_history.append(cumulative_reward)

            logging.info(
                "episode: {:d}/{:d} | status: {:4s} | e: {:.5f}".format(
                    episode, episodes, status.name, exploration_rate))

            if episode % check_convergence_every == 0:
                # check if the current model does win from all starting cells
                # only possible if there is a finite number of starting states
                w_all, win_rate = self.environment.check_win_all(self)
                win_history.append((episode, win_rate))
                if w_all is True and stop_at_convergence is True:
                    logging.info("won from all start cells, stop learning")
                    break

            exploration_rate *= exploration_decay  # explore less as training progresses

        logging.info("episodes: {:d} | time spent: {}".format(
            episode,
            datetime.now() - start_time))

        return cumulative_reward_history, win_history, episode, datetime.now(
        ) - start_time