示例#1
0
def trainA3C(file_name="A3C",
             env=GridworldEnv(1),
             update_global_iter=10,
             gamma=0.999,
             is_plot=False,
             num_episodes=500,
             max_num_steps_per_episode=1000,
             learning_rate=0.0001):
    """
    A3C training routine. Retuns rewards and durations logs.
    Plot environment screen
    """
    ns = env.observation_space.shape[
        0]  ## Line to fix for arbitrary environment
    na = env.action_space.n

    gnet = Net(ns, na)  # global network
    gnet.share_memory()  # share the global parameters in multiprocessing
    opt = SharedAdam(gnet.parameters(), lr=learning_rate)  # global optimizer
    global_ep, global_ep_r, res_queue = mp.Value('i',
                                                 0), mp.Value('d',
                                                              0.), mp.Queue()

    # parallel training
    workers = [
        Worker(gnet, opt, global_ep, global_ep_r, res_queue, i,
               update_global_iter, num_episodes, max_num_steps_per_episode,
               gamma, env, ns, na) for i in range(mp.cpu_count())
    ]

    [w.start() for w in workers]
    episode_rewards = []  # record episode reward to plot
    while True:
        r = res_queue.get()
        if r is not None:
            episode_rewards.append(r)
        else:
            break
    [w.join() for w in workers]

    #Store results
    np.save(file_name + '-a3c-rewards', episode_rewards)

    return episode_rewards
def trainDistral(file_name="Distral_1col",
                 list_of_envs=[GridworldEnv(5),
                               GridworldEnv(4)],
                 batch_size=128,
                 gamma=0.80,
                 alpha=0.5,
                 beta=0.005,
                 is_plot=False,
                 num_episodes=1000,
                 max_num_steps_per_episode=10,
                 learning_rate=0.001,
                 memory_replay_size=10000,
                 memory_policy_size=1000):

    # Specify Environment conditions
    input_size = list_of_envs[0].observation_space.shape[0]
    num_actions = list_of_envs[0].action_space.n
    tasks = len(list_of_envs)

    # Define our set of policies, including distilled one
    models = torch.nn.ModuleList(
        [Policy(input_size, num_actions) for _ in range(tasks + 1)])
    optimizers = [
        optim.Adam(model.parameters(), lr=learning_rate) for model in models
    ]

    # Store the total rewards
    episode_rewards = [[] for i in range(num_episodes)]
    episode_duration = [[] for i in range(num_episodes)]

    for i_episode in range(num_episodes):

        # For each one of the envs
        for i_env, env in enumerate(list_of_envs):

            #Initialize state of envs
            state = env.reset()

            #Store total reward per environment per episode
            total_reward = 0

            # Store duration of each episode per env
            duration = 0

            for t in range(max_num_steps_per_episode):

                # Run our policy
                action = select_action(state, models[i_env + 1], models[0])

                next_state, reward, done, _ = env.step(action.data[0])
                models[i_env + 1].rewards.append(reward)
                total_reward += reward
                duration += 1

                #if is_plot:
                #    env.render()

                if done:
                    break

                #Update state
                state = next_state

            episode_rewards[i_episode].append(total_reward)
            episode_duration[i_episode].append(duration)

            # Distill for each environment
            finish_episode(models[i_env + 1], models[0], optimizers[i_env + 1],
                           optimizers[0], alpha, beta, gamma)

        if i_episode % args.log_interval == 0:
            for i in range(tasks):
                print(
                    'Episode: {}\tEnv: {}\tDuration: {}\tTotal Reward: {:.2f}'.
                    format(i_episode, i, episode_duration[i_episode][i],
                           episode_rewards[i_episode][i]))

    np.save(file_name + '-distral0-rewards', episode_rewards)
    np.save(file_name + '-distral0-duration', episode_duration)

    print('Completed')
示例#3
0
                    default=543,
                    metavar='N',
                    help='random seed (default: 1)')
parser.add_argument('--render',
                    action='store_true',
                    help='render the environment')
parser.add_argument('--log-interval',
                    type=int,
                    default=10,
                    metavar='N',
                    help='interval between training status logs (default: 10)')
args = parser.parse_args()

#env = gym.make('CartPole-v0')

env = GridworldEnv(8)
env.seed(args.seed)
#torch.manual_seed(args.seed)

SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])


class Policy(nn.Module):
    def __init__(self):
        super(Policy, self).__init__()
        self.affine1 = nn.Linear(3, 128)
        self.action_head = nn.Linear(128, 5)
        self.value_head = nn.Linear(128, 1)

        self.saved_actions = []
        self.rewards = []
示例#4
0
def trainDQN(file_name="DQN",
             env=GridworldEnv(1),
             batch_size=128,
             gamma=0.999,
             eps_start=0.9,
             eps_end=0.05,
             eps_decay=1000,
             is_plot=False,
             num_episodes=500,
             max_num_steps_per_episode=1000,
             learning_rate=0.0001,
             memory_replay_size=10000):
    """
    DQN training routine. Retuns rewards and durations logs.
    Plot environment screen
    """
    if is_plot:
        env.reset()
        plt.ion()
        plt.figure()
        plt.imshow(get_screen(env).cpu().squeeze(0).squeeze(0).numpy(),
                   interpolation='none')
        plt.title("")
        plt.draw()
        plt.pause(0.00001)

    num_actions = env.action_space.n
    model = DQN(num_actions)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        model.cuda()

    memory = ReplayMemory(memory_replay_size)

    episode_durations = []
    mean_durations = []
    episode_rewards = []
    mean_rewards = []
    steps_done = 0  # total steps
    for i_episode in range(num_episodes):
        if i_episode % 20 == 0:
            clear_output()
        print("Cur episode:", i_episode, "steps done:", steps_done,
                "exploration factor:", eps_end + (eps_start - eps_end) * \
                math.exp(-1. * steps_done / eps_decay))
        # Initialize the environment and state
        env.reset()
        # last_screen = env.current_grid_map
        # (1, 1, 8, 8)
        current_screen = get_screen(env)
        state = current_screen  # - last_screen
        for t in count():
            # Select and perform an action
            action = select_action(state, model, num_actions, eps_start,
                                   eps_end, eps_decay, steps_done)
            steps_done += 1
            _, reward, done, _ = env.step(action[0, 0])
            reward = Tensor([reward])

            # Observe new state
            last_screen = current_screen
            current_screen = get_screen(env)
            if not done:
                next_state = current_screen  # - last_screen
            else:
                next_state = None

            # Store the transition in memory
            memory.push(state, action, next_state, reward)

            # Move to the next state
            state = next_state
            # plot_state(state)
            # env.render()

            # Perform one step of the optimization (on the target network)
            optimize_model(model, optimizer, memory, batch_size, gamma)
            if done or t + 1 >= max_num_steps_per_episode:
                episode_durations.append(t + 1)
                episode_rewards.append(env.episode_total_reward)
                if is_plot:
                    plot_durations(episode_durations, mean_durations)
                    plot_rewards(episode_rewards, mean_rewards)
                break

    print('Complete')
    env.render(close=True)
    env.close()
    if is_plot:
        plt.ioff()
        plt.show()

    ## Store Results

    np.save(file_name + '-dqn-rewards', episode_rewards)
    np.save(file_name + '-dqn-durations', episode_durations)

    return model, episode_rewards, episode_durations
def trainD(file_name="Distral_1col",
           list_of_envs=[GridworldEnv(4), GridworldEnv(5)],
           batch_size=128,
           gamma=0.999,
           alpha=0.9,
           beta=5,
           eps_start=0.9,
           eps_end=0.05,
           eps_decay=5,
           is_plot=False,
           num_episodes=200,
           max_num_steps_per_episode=1000,
           learning_rate=0.001,
           memory_replay_size=10000,
           memory_policy_size=1000):
    """
    Soft Q-learning training routine. Retuns rewards and durations logs.
    Plot environment screen
    """
    num_actions = list_of_envs[0].action_space.n
    num_envs = len(list_of_envs)
    policy = PolicyNetwork(num_actions)
    models = [DQN(num_actions)
              for _ in range(0, num_envs)]  ### Add torch.nn.ModuleList (?)
    memories = [
        ReplayMemory(memory_replay_size, memory_policy_size)
        for _ in range(0, num_envs)
    ]

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        policy.cuda()
        for model in models:
            model.cuda()

    optimizers = [
        optim.Adam(model.parameters(), lr=learning_rate) for model in models
    ]
    policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate)
    # optimizer = optim.RMSprop(model.parameters(), )

    episode_durations = [[] for _ in range(num_envs)]
    episode_rewards = [[] for _ in range(num_envs)]

    steps_done = np.zeros(num_envs)
    episodes_done = np.zeros(num_envs)
    current_time = np.zeros(num_envs)

    # Initialize environments
    for env in list_of_envs:
        env.reset()

    while np.min(episodes_done) < num_episodes:
        # TODO: add max_num_steps_per_episode

        # Optimization is given by alterating minimization scheme:
        #   1. do the step for each env
        #   2. do one optimization step for each env using "soft-q-learning".
        #   3. do one optimization step for the policy

        for i_env, env in enumerate(list_of_envs):
            # print("Cur episode:", i_episode, "steps done:", steps_done,
            #         "exploration factor:", eps_end + (eps_start - eps_end) * \
            #         math.exp(-1. * steps_done / eps_decay))

            # last_screen = env.current_grid_map
            current_screen = get_screen(env)
            state = current_screen  # - last_screen
            # Select and perform an action
            action = select_action(state, policy, models[i_env], num_actions,
                                   eps_start, eps_end, eps_decay,
                                   episodes_done[i_env], alpha, beta)
            steps_done[i_env] += 1
            current_time[i_env] += 1
            _, reward, done, _ = env.step(action[0, 0])
            reward = Tensor([reward])

            # Observe new state
            last_screen = current_screen
            current_screen = get_screen(env)
            if not done:
                next_state = current_screen  # - last_screen
            else:
                next_state = None

            # Store the transition in memory
            time = Tensor([current_time[i_env]])
            memories[i_env].push(state, action, next_state, reward, time)

            # Perform one step of the optimization (on the target network)
            optimize_model(policy, models[i_env], optimizers[i_env],
                           memories[i_env], batch_size, alpha, beta, gamma)
            if done:
                print(
                    "ENV:", i_env, "iter:", episodes_done[i_env], "\treward:",
                    env.episode_total_reward, "\tit:", current_time[i_env],
                    "\texp_factor:", eps_end + (eps_start - eps_end) *
                    math.exp(-1. * episodes_done[i_env] / eps_decay))
                env.reset()
                episodes_done[i_env] += 1
                episode_durations[i_env].append(current_time[i_env])
                current_time[i_env] = 0
                episode_rewards[i_env].append(env.episode_total_reward)
                if is_plot:
                    plot_rewards(episode_rewards, i_env)

        optimize_policy(policy, policy_optimizer, memories, batch_size,
                        num_envs, gamma)

    print('Complete')
    env.render(close=True)
    env.close()
    if is_plot:
        plt.ioff()
        plt.show()

    ## Store Results

    np.save(file_name + '-distral-2col-rewards', episode_rewards)
    np.save(file_name + '-distral-2col-durations', episode_durations)

    return models, policy, episode_rewards, episode_durations
示例#6
0
import sys

sys.path.append('../')
from envs.gridworld_env import GridworldEnv
from utils import play_game

sys.path.append('../dqn0')
import trainingDQN0

import gym

agent, _, _ = trainingDQN0.trainDQN0(
    file_name="env8",
    env=GridworldEnv(8),
    batch_size=128,
    gamma=0.9,
    eps_start=0.9,
    eps_end=0.05,
    eps_decay=10000,
    is_plot=False,
    num_episodes=500,
    max_num_steps_per_episode=10000,
    learning_rate=0.001,
    memory_replay_size=10000,
)

#play_game(GridworldEnv(1), agent)
示例#7
0
def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4),
            GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9,
            beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5,
            is_plot=False, num_episodes=200,
            max_num_steps_per_episode=1000, learning_rate=0.001,
            memory_replay_size=10000, memory_policy_size=1000):
    """
    Soft Q-learning training routine. Retuns rewards and durations logs.
    Plot environment screen
    """
    # action dimension
    num_actions = list_of_envs[0].action_space.n
    # total envs
    num_envs = len(list_of_envs)
    # pi_0
    policy = PolicyNetwork(num_actions)
    # Q value, every environment has one, used to calculate A_i,
    models = [DQN(num_actions) for _ in range(0, num_envs)]   ### Add torch.nn.ModuleList (?)
    # replay buffer for env ???
    memories = [ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs)]

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    # device = "cpu"
    print(device)
    # model
    policy = policy.to(device)
    for i in range(len(models)):
        models[i] = models[i].to(device)

    # optimizer for every Q model
    optimizers = [optim.Adam(model.parameters(), lr=learning_rate)
                    for model in models]
    # optimizer for policy
    policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate)
    # optimizer = optim.RMSprop(model.parameters(), )

    # info list for each environment
    episode_durations = [[] for _ in range(num_envs)]   # list of local steps
    episode_rewards = [[] for _ in range(num_envs)]     # list of list of episode reward

    episodes_done = np.zeros(num_envs)      # episode num
    steps_done = np.zeros(num_envs)         # global timesteps for each env
    current_time = np.zeros(num_envs)       # local timesteps for each env

    # Initialize environments
    for env in list_of_envs:
        env.reset()

    while np.min(episodes_done) < num_episodes:
        policy.train()
        for model in models:
            model.train()

        # TODO: add max_num_steps_per_episode

        # Optimization is given by alterating minimization scheme:
        #   1. do the step for each env
        #   2. do one optimization step for each env using "soft-q-learning".
        #   3. do one optimization step for the policy

        #   1. do the step for each env
        for i_env, env in enumerate(list_of_envs):
            # print("Cur episode:", i_episode, "steps done:", steps_done,
            #         "exploration factor:", eps_end + (eps_start - eps_end) * \
            #         math.exp(-1. * steps_done / eps_decay))
        
            # last_screen = env.current_grid_map
            # ===========update step info begin========================
            current_screen = get_screen(env)
            # state
            state = current_screen # - last_screen
            # action chosen by pi_1~pi_i
            action = select_action(state, policy, models[i_env], num_actions,
                                    eps_start, eps_end, eps_decay,
                                    episodes_done[i_env], alpha, beta, device)
            # global_steps
            steps_done[i_env] += 1
            # local steps
            current_time[i_env] += 1
            # reward
            _, reward, done, _ = env.step(action[0, 0])
            reward = Tensor([reward])

            # next state
            last_screen = current_screen
            current_screen = get_screen(env)
            if not done:
                next_state = current_screen # - last_screen
            else:
                next_state = None

            # add to buffer
            time = Tensor([current_time[i_env]])
            memories[i_env].push(state, action, next_state, reward, time)

            #   2. do one optimization step for each env using "soft-q-learning".
            # Perform one step of the optimization (on the target network)
            optimize_model(policy, models[i_env], optimizers[i_env],
                            memories[i_env], batch_size, alpha, beta, gamma, device)
            # ===========update step info end ========================


            # ===========update episode info begin ====================
            if done:
                print("ENV:", i_env, "iter:", episodes_done[i_env],
                    "\treward:", env.episode_total_reward,
                    "\tit:", current_time[i_env], "\texp_factor:", eps_end +
                    (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay))
                # reset env
                env.reset()
                # episode steps
                episodes_done[i_env] += 1
                # append each episode local timesteps list for every env
                episode_durations[i_env].append(current_time[i_env])
                # reset local timesteps
                current_time[i_env] = 0
                # append total episode_reward to list
                episode_rewards[i_env].append(env.episode_total_reward)
                if is_plot:
                    plot_rewards(episode_rewards, i_env)
            # ===========update episode info end ====================

        #   3. do one optimization step for the policy
        # after all envs has performed one step, optimize policy
        optimize_policy(policy, policy_optimizer, memories, batch_size,
                    num_envs, gamma, device)

    print('Complete')
    env.render(close=True)
    env.close()
    if is_plot:
        plt.ioff()
        plt.show()

    ## Store Results

    np.save(file_name + '-distral-2col-rewards', episode_rewards)
    np.save(file_name + '-distral-2col-durations', episode_durations)

    return models, policy, episode_rewards, episode_durations
示例#8
0
import sys

sys.path.append('../')
from envs.gridworld_env import GridworldEnv

sys.path.append('../sql')
import trainingSQL

trainingSQL.trainSQL(
    file_name="env1",
    env=GridworldEnv(1),
    batch_size=128,
    gamma=0.95,
    beta=5,
    eps_start=0.9,
    eps_end=0.05,
    eps_decay=300,
    is_plot=False,
    num_episodes=500,
    max_num_steps_per_episode=1000,
    learning_rate=0.001,
    memory_replay_size=10000,
)
示例#9
0
# trainingDQN.trainDQN(file_name="env1",
#                     env=GridworldEnv(1),
#                     batch_size=128,
#                     gamma=0.999,
#                     eps_start=0.9,
#                     eps_end=0.05,
#                     eps_decay=1000,
#                     is_plot=True,
#                     num_episodes=500,
#                     max_num_steps_per_episode=1000,
#                     learning_rate=0.0001,
#                     memory_replay_size=10000,
#                 )

agent, _, _ = trainingDQN.trainDQN(
    file_name="env1",
    env=GridworldEnv(1),
    batch_size=128,
    gamma=0.999,
    eps_start=0.9,
    eps_end=0.05,
    eps_decay=1000,
    is_plot=False,
    num_episodes=500,
    max_num_steps_per_episode=1000,
    learning_rate=0.0001,
    memory_replay_size=10000,
)

play_game(GridworldEnv(1), agent)
示例#10
0
def trainSQL0(file_name="SQL0", env=GridworldEnv(1), batch_size=128,
            gamma=0.999, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=1000,
            is_plot=False, num_episodes=500, max_num_steps_per_episode=1000,
            learning_rate=0.001, memory_replay_size=10000):
    """
    Soft Q-learning training routine when observation vector is input
    Retuns rewards and durations logs.
    Plot environment screen
    """
    if is_plot:
        env.reset()
        plt.ion()
        plt.figure()
        plt.imshow(get_screen(env).cpu().squeeze(0).squeeze(0).numpy(),
                   interpolation='none')
        plt.draw()
        plt.pause(0.00001)

    num_actions = env.action_space.n
    input_size = env.observation_space.shape[0]
    model = DQN(input_size, num_actions)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    # optimizer = optim.RMSprop(model.parameters(), )

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        model.cuda()

    memory = ReplayMemory(memory_replay_size)

    episode_durations = []
    mean_durations = []
    episode_rewards = []
    mean_rewards = []

    steps_done, t = 0, 0
    # plt.ion()
    for i_episode in range(num_episodes):
        if i_episode % 20 == 0:
            clear_output()
        if i_episode != 0:
            print("Cur episode:", i_episode, "steps done:", episode_durations[-1],
                    "exploration factor:", eps_end + (eps_start - eps_end) * \
                    math.exp(-1. * steps_done / eps_decay), "reward:", env.episode_total_reward)
        # Initialize the environment and state
        state = torch.from_numpy( env.reset() ).type(torch.FloatTensor).view(-1,input_size)

        for t in count():
            # Select and perform an action
            action = select_action(state, model, num_actions,
                                    eps_start, eps_end, eps_decay, steps_done)
            next_state_tmp, reward, done, _ = env.step(action[0, 0])
            reward = Tensor([reward])

            # Observe new state
            next_state = torch.from_numpy( next_state_tmp ).type(torch.FloatTensor).view(-1,input_size)

            if done:
                next_state = None

            # Store the transition in memory
            memory.push(state, action, next_state, reward)

            # Move to the next state
            state = next_state
            # plot_state(state)
            # env.render()

            # Perform one step of the optimization (on the target network)
            optimize_model(model, optimizer, memory, batch_size, gamma, beta)  #### Difference w.r.t DQN
            if done or t + 1 >= max_num_steps_per_episode:
                episode_durations.append(t + 1)
                episode_rewards.append(env.episode_total_reward)  ##### Modify for OpenAI envs such as CartPole
                if is_plot:
                    plot_durations(episode_durations, mean_durations)
                    plot_rewards(episode_rewards, mean_rewards)
                steps_done += 1
                break

    print('Complete')
    env.render(close=True)
    env.close()
    if is_plot:
        plt.ioff()
        plt.show()

    ## Store Results

    np.save(file_name + '-sql0-rewards', episode_rewards)
    np.save(file_name + '-sql0-durations', episode_durations)

    return model, episode_rewards, episode_durations
示例#11
0
import sys

sys.path.append('../')
from envs.gridworld_env import GridworldEnv

sys.path.append('../a3c')
import trainingA3C

import gym

trainingA3C.trainA3C(file_name="env3",
                     env=GridworldEnv(3),
                     update_global_iter=10,
                     gamma=0.95,
                     is_plot=False,
                     num_episodes=500,
                     max_num_steps_per_episode=1000,
                     learning_rate=0.001)