def rise_and_set(lat, lon, horizon=0): sun = Sun() date = None while True: loc = Observer() loc.horizon = str(horizon) loc.lat = str(lat) loc.lon = str(lon) loc.date = clock.now() #if date: # loc.date = date #loc.date = loc.date.datetime().date() # strip time t_rise = loc.next_rising(sun) t_set = loc.next_setting(sun) #date = yield localtime(t_rise), localtime(t_set) yield localtime(t_rise), localtime(t_set)
def main(): # arguments from argparse import ArgumentParser args = ArgumentParser( epilog= """This script will compute the local coordinates (altitude and azimuth) for Jupiter and Saturn for the given date. Altitude is degrees above the horizon and azimuth is degrees eastwards from North. Locate North by finding the Polaris, the pole star.""") args.add_argument( "-x", "--longitude", type=float, default=-74.151494, help= "East longitude of the observer in decimal degrees. West is negative.") args.add_argument( "-y", "--latitude", type=float, default=40.373545, help="North latitude of the observer. South is negative.") args.add_argument("-t", "--timezone", type=str, default='US/Eastern', help="The local time-zone of the observer.") args.add_argument("-e", "--elevation", type=float, default=20e0, help="Elevation in metres above sea level.") args.add_argument( "time", nargs='?', default=datetime.now().strftime("%H:%M:%S"), help="Local time for calculation, default is current time, as HH:MM:SS." ) args.add_argument( "date", nargs='?', default=datetime.now().strftime("%Y-%m-%d"), help= "Local date for calculation, default is current date, as YYYY-MM-DD.") args = args.parse_args() # time localtime = timezone(args.timezone) utc = timezone('UTC') timestamp = localtime.localize( datetime.strptime(args.date + ' ' + args.time, '%Y-%m-%d %H:%M:%S')) observer = Observer() observer.lat = args.latitude * pi / 180.0 observer.lon = args.longitude * pi / 180.0 observer.date = timestamp.astimezone(utc) observer.elevation = args.elevation print( "Calculation of the location of Jupiter and Saturn for an observer at %.4f° %s, %.4f° %s, %.4f m above sea level.\n" % (abs(args.longitude), "E" if args.longitude > 0 else "W", abs(args.latitude), "N" if args.latitude > 0 else "S", args.elevation)) print("Computed for local time %s." % timestamp.astimezone(localtime).strftime('%Y-%m-%d %H:%M:%S')) # Sun sun = Sun(observer) sunlight = max(0e0, cos(pi / 2 - sun.alt)) * 1e2 if sunlight > 0: print( "The Sun is currently above the horizon, with light at %.2f %%, at %.2f° %s." % (sunlight, (sun.az - pi if sun.az > pi else sun.az) * 180e0 / pi, "E" if sun.az < pi else "W" if sun.az > pi else "S")) sunset = utc.localize( datetime.strptime(str( observer.next_setting(sun)), "%Y/%m/%d %H:%M:%S")).astimezone( localtime) if observer.next_setting(sun) != None else None if sunset != None: print("The Sun will set at %s." % sunset.strftime("%H:%M:%S")) else: print("The Sun has set.") sunrise = utc.localize( datetime.strptime(str( observer.next_rising(sun)), "%Y/%m/%d %H:%M:%S")).astimezone( localtime) if observer.next_rising(sun) != None else None print("The Sun will rise at %s." % sunrise.strftime("%H:%M:%S")) # Moon moon = Moon(observer) moonlight = max(0e0, cos(pi / 2 - moon.alt)) * 1e2 if moonlight > 0: print( "The Moon is currently above the horizon, with light at %.2f %%." % moonlight) # Jupiter jupiter = Jupiter(observer) if jupiter.alt > 0e0: print( "Jupiter is %.2f° above the horizon, %.2f° %s." % (jupiter.alt * 180e0 / pi, (2 * pi - jupiter.az if jupiter.az > pi else jupiter.az) * 180e0 / pi, "W" if jupiter.az > pi else "E" if jupiter.az < pi else "S")) else: print("Jupiter is not above the horizon.") # Jupiter saturn = Saturn(observer) if saturn.alt > 0e0: print("Saturn is %.2f° above the horizon, %.2f° %s." % (saturn.alt * 180e0 / pi, (2 * pi - saturn.az if saturn.az > pi else saturn.az) * 180e0 / pi, "W" if saturn.az > pi else "E" if saturn.az < pi else "S")) else: print("Saturn is not above the horizon.") # done print("Done.")
def whats_up( start: datetime.datetime, end: datetime.datetime, location: ephem.Observer, magnitude: float = 6.) -> dict: """ Find all objects that will be "up" between start and end time. Takes a location, start and end time, and limiting magnitude. """ body_list = [] start_e, end_e = ephem.Date(start), ephem.Date(end) location.date = start_e for o,body_type in filter(lambda x: x[1] != 'planetary_moon', OBJECT_DICT.values()): o.compute(location) circumpolar = False rising, setting = None, None if body_type != 'satellite': try: rising = location.next_rising(o, start = location.previous_antitransit(o)) setting = location.next_setting(o, start = rising) except ephem.AlwaysUpError: circumpolar = True except ephem.NeverUpError: pass elif body_type == 'satellite': info = list(location.next_pass(o)) rising, setting = info[0], info[4] # the logic here is as follows: # 1. Is object bright enough? # 2. Is it in the sky now? # a. Is it circumpolar (does it never set)? # b. Does it rise during the given timeframe? # c. Does it set during the given timeframe? # d. Does it rise before the given timeframe and set after the given timeframe? if o.mag < -30: # something's wrong with the data--skip it. continue if o.mag < magnitude and (circumpolar or \ (rising and start_e < rising < end_e) or \ (setting and start_e < setting < end_e) or \ (rising and setting and (rising < start_e) and \ (setting > end_e))): # If it's in the sky and bright enough, add the entry to the list if rising or setting or circumpolar: body_list.append({ 'name': o.name.split('|') if o.name.find('|') >= 0 else o.name, 'magnitude': o.mag }) # If it has a rise time, add that to the most recently added item if rising: body_list[-1]['rise_time'] = rising.datetime() # If it has a set time, add that to the most recently added item if setting: body_list[-1]['set_time'] = setting.datetime() if o.name == 'Moon': body_list[-1]['phase'] = o.moon_phase * 100 body_list.sort(key = lambda x: x['magnitude']) return { 'start_time': start, # start of timeframe 'end_time': end, # end of timeframe 'objects': body_list # all items visible during timeframe, as computed above }