示例#1
0
def make_kc_with_dynaclamp(kc_name,
                           kc_file,
                           inject,
                           tstart,
                           tend,
                           ggn_vm=None):
    """Read KC model from `kc_file`, inject current `inject` nA, apply
    dynamic clamp `ggn_vm`, which should be a 2D array with time (ms)
    in column 0, and voltage (mV) in column 1.

    """
    global model_dict
    kc = nu.create_cell(kc_name, filename=kc_file)
    model_dict[kc] = None
    iclamp = ephys.setup_current_clamp(kc.soma,
                                       pos=0.5,
                                       delay=Q_(tstart, 'ms'),
                                       duration=Q_((tend - tstart), 'ms'),
                                       amplitude=Q_(inject, 'nA'))
    model_dict[iclamp] = None
    ggn_g_vec = None
    if ggn_vm is not None:
        syn = h.GradedSyn(kc.soma(0.5))
        for attr, value in GGN_KC_SYN_PARAMS.items():
            setattr(syn, attr, value)
        model_dict[syn] = None
        ggn_comp = h.Section('ggn')
        model_dict[ggn_comp] = None
        h.setpointer(ggn_comp(0.5)._ref_v, 'vpre', syn)
        ggn_vm_vec = h.Vector(ggn_vm[:, 1])
        tvec = h.Vector(ggn_vm[:, 0])
        model_dict[tvec] = None
        # vec.play(var_reference, t, continuous) for interpolating
        ret = ggn_vm_vec.play(ggn_comp(0.5)._ref_v, tvec, 1)
        print('####', ret)
        model_dict[ggn_vm_vec] = None
        ggn_g_vec = h.Vector()
        ggn_g_vec.record(syn._ref_g)
        model_dict[ggn_g_vec] = None
    kc_vm_vec = h.Vector()
    kc_vm_vec.record(kc.soma(0.5)._ref_v)
    model_dict[kc_vm_vec] = None
    print('Built model')
    return (kc_vm_vec, ggn_g_vec)
示例#2
0
 }
 kc = nu.create_cell(args.kc, filename=args.kcfile)
 kc_solo = nu.create_cell(args.kc, filename=args.kcfile)
 ggn = nu.create_cell(args.ggn, filename=args.ggnfile)
 model = make_ggn_kc_conn(ggn, kc, ggn_kc_syn_params)
 tstart = 0.5e3
 tend = 3.1e3
 if len(args.freq) > 1:
     inject = make_driving_current(kc.soma, 0.5, args.amp[0], 1.0, tstart,
                                   tend)
     inject_solo = make_driving_current(kc_solo.soma, 0.5, args.amp[0], 1.0,
                                        tstart, tend)
 else:
     inject = ephys.setup_current_clamp(kc.soma,
                                        delay=Q_(tstart, 'ms'),
                                        duration=Q_((tend - tstart), 'ms'),
                                        amplitude=Q_(args.amp[0], 'nA'),
                                        pos=0.5)
     inject_solo = ephys.setup_current_clamp(kc_solo.soma,
                                             delay=Q_(tstart, 'ms'),
                                             duration=Q_((tend - tstart),
                                                         'ms'),
                                             amplitude=Q_(
                                                 args.amp[0], 'nA'),
                                             pos=0.5)
 tvec = h.Vector()
 kc_vvec = h.Vector()
 ggn_ca_vvec = h.Vector()
 ivec = h.Vector()
 kc_solo_vvec = h.Vector()
 ivec_solo = h.Vector()
示例#3
0
def run_model(args):
    """setup and run a model with templates and other parameters specified
    in args (parsed arguments). List of arguments:

    template_filename: HDF5 file containing the network template and
    PN spike trains. These data should be at paths in constants
    specified at the top of this file.

    output_directory: directory to dump simulated data into.

    pn_shift: shift the assignment of spike trains to PNs by this
    amount, i.e., if pn_shift is 2, then the spike train of pn_0 is
    assigned to pn_2, and pn_{i+2} gets the spike train of pn_{i},
    with wrapping around the edge.

    pn_dither: The maximum magnitude of time shift when dithering the
    PN spike times.

    n_kc_vm: number of KCs to record Vm from

    n_ggn_vm: number of GGN sections to record Vm from for each of
    basal, calyceal and alpha lobe regions.

    recstep: number of integration steps between each recording point.

    simtime: total simulation time

    """
    global model_dict
    output_filename = os.path.join(args.output_directory,
                                   'fixed_net_UTC{}-PID{}-JID{}.h5'.format(
                                       cfg.timestamp.strftime('%Y_%m_%d__%H_%M_%S'),
                                       cfg.mypid, cfg.myjobid))
    ggn = create_ggn()
    ggn_name_sec_dict = {sec.name(): sec for sec in ggn.all}
    with h5.File(args.template_filename, 'r') as template_fd:
        config = yaml.load(template_fd.attrs['config'].decode())
        pn_spikes = load_pn_spikes(template_fd)
        pns, spike_trains = zip(*pn_spikes)
        spike_trains = dither_spiketrain(spike_trains, cell_shift=args.pn_shift,
                                         dither=args.pn_dither)
        pn_spike_vecs, vecstims = create_pn_output(spike_trains)
        kcs = create_kcs(template_fd, config=config['kc'])
        if args.test_kc >= 0:
            delay = cfg.Q_(config['stimulus']['onset'])
            if 'delay' in config['pn_kc_syn']:
                delay += cfg.Q_(config['pn_kc_syn']['delay'])
            duration = cfg.Q_(config['stimulus']['duration'])
            amplitude = cfg.Q_(args.kc_current)
            iclamp = ephys.setup_current_clamp(kcs[args.test_kc].soma,
                                               delay=delay, duration=duration, amplitude=amplitude)
            # test_kc_vvec = ephys.setup_sec_rec(kcs[args.test_kc].soma, 'v')[0] # this is added in setup recording
            model_dict['kc_iclamp'] = iclamp
            model_dict['test_kc'] = kcs[args.test_kc]
        kc_name_sec_dict = {kc.soma.name(): kc.soma for kc in kcs}
        nc_pn_kc, syn_pn_kc = create_pn_kc_conn(template_fd,
                                                dict(zip(pns, vecstims)), kc_name_sec_dict,
                                                config=config['pn_kc_syn'])
        syn_ggn_kc = create_ggn_kc_conn(template_fd, kc_name_sec_dict,
                                        ggn_name_sec_dict, config=config['ggn_kc_syn'])
        syn_kc_ggn, nc_kc_ggn = create_kc_ggn_conn(template_fd,
                                                   kc_name_sec_dict,
                                                   ggn_name_sec_dict,
                                                   config=config['kc_ggn_alphaL_syn'])
        setup_ig(template_fd, ggn_name_sec_dict, config=config)
        data = setup_recording(kcs, ggn, n_kc_vm=args.n_kc_vm,
                               n_ggn_vm=args.n_ggn_vm,
                               t=h.dt * args.recstep)
        h.tstop = args.simtime
        start = datetime.utcnow()
        h.init()
        for v in pn_spike_vecs:
            if np.any(np.array(v.x) <= 0):
                print('negative pn spike time', v)
        cfg.logger.info('Finished init. Starting simulation of {} ms'.format(
            h.tstop))
        if h.tstop > 0:
            nu.block_run(logger=cfg.logger)
        else:
            cfg.logger.info('Dry run. Skipping simulation')
        end = datetime.utcnow()
        delta = end - start
        data['tstart'] = start
        data['tend'] = end
        data['pn_spikes'] = dict(zip(pns, spike_trains))
        cfg.logger.info('Finished running simulation in {} s'.format(
            delta.days * 86400 +
            delta.seconds +
            delta.microseconds * 1e-6))
        cfg.logger.info('Starting data save in {}'.format(output_filename))
        ig_vm = model_dict.get('ig_vm',  None)
        data['ig_vm'] = ig_vm
        save(args.template_filename, output_filename, data, model_dict, args.savesyn, config)
        cfg.logger.info('Finished')