num_modules) + "_d10_Q" + str(Q) + "T_" + str( T) + "_iter" + str(filecount) + ".txt" f2 = (zf.open(file2)) lines = f2.readlines() x = 0 recovered_list = {} for line in lines: data = re.split(',', line)[1:] data[0] = data[0][2:] data[-1] = data[-1][:-2] recovered_list[x] = [int(num) for num in data] x += 1 ############################################# for x in xrange(500): if ec.is_epidemic(infected_list[x]) == True: local1, global1 = ec.calculate_local_vs_global_burden( num_modules, infected_list[x], recovered_list[x], G[filecount]) local_burden.append(local1) global_burden.append(global1) if len(local_burden) == 0: local_burden = [0] if len(global_burden) == 0: global_burden = [0] if not l_epidict[graph].has_key(Q): l_epidict[graph][Q] = {} if not l_error[graph].has_key(Q): l_error[graph][Q] = {} if not l_se[graph].has_key(Q): l_se[graph][Q] = {} if not g_epidict[graph].has_key(Q): g_epidict[graph][Q] = {} if not g_error[graph].has_key(Q): g_error[graph][Q] = {} if not g_se[graph].has_key(Q): g_se[graph][Q] = {}
data[-1]=data[-1][:-2] infected_list[x]=[int(num) for num in data] x+=1 with zf.open(file2,'r') as f2: lines=f2.readlines() x=0 recovered_list={} for line in lines: data=re.split(',', line)[1:] data[0]=data[0][2:] data[-1]=data[-1][:-2] recovered_list[x]=[int(num) for num in data] x+=1 ################################################################################### epi_duration.append([max(recovered_list[x]) for x in xrange(500) if ec.is_epidemic(infected_list[x])==True]) duration_list=[x for sublist in epi_duration for x in sublist] if len(duration_list)==0:duration_list=[0] if not durdict[graph].has_key(Q): durdict[graph][Q]={} if not error[graph].has_key(Q): error[graph][Q]={} if not se[graph].has_key(Q): se[graph][Q]={} durdict[graph][Q][num_modules] = np.mean(duration_list) #mean of all the epidemic size above the epidemic criteria error[graph][Q][num_modules] = np.std(duration_list) se[graph][Q][num_modules] = (1.*np.std(duration_list))/ np.sqrt(len(duration_list)) print graph, num_modules, Q, T, np.mean(duration_list) ################################# ################################# for Q, num_modules in zip(Qrange, num_modules_list):