numpyro.set_host_device_count(args.num_chains)
if __name__ == "__main__":
    print(f"Running Sensitivity Analysis {__file__} with config:")
    config = load_model_config(args.model_config)
    pprint_mb_dict(config)

    print("Loading Data")
    data = preprocess_data(get_data_path())
    data.featurize(**config["featurize_kwargs"])
    data.mask_new_variant(
        new_variant_fraction_fname=get_new_variant_path(),
    )
    data.mask_from_date("2021-01-09")

    print("Loading EpiParam")
    ep = EpidemiologicalParameters()

    model_func = get_model_func_from_str(args.model_type)
    ta = get_target_accept_from_model_str(args.model_type)
    td = get_tree_depth_from_model_str(args.model_type)

    base_outpath = generate_base_output_dir(
        args.model_type, args.model_config, args.exp_tag
    )
    ts_str = datetime.now().strftime("%Y-%m-%d;%H:%M:%S")
    summary_output = os.path.join(base_outpath, f"{ts_str}_summary.json")
    full_output = os.path.join(base_outpath, f"{ts_str}_full.netcdf")

    model_build_dict = config["model_kwargs"]

    posterior_samples, _, info_dict, _ = run_model(
numpyro.set_host_device_count(args.num_chains)

if __name__ == "__main__":
    print(f"Running Sensitivity Analysis {__file__} with config:")
    config = load_model_config(args.model_config)
    pprint_mb_dict(config)

    print("Loading Data")
    data = preprocess_data(get_data_path())
    data.featurize(**config["featurize_kwargs"])
    data.mask_new_variant(new_variant_fraction_fname=get_new_variant_path(), )
    data.mask_from_date("2021-01-09")

    print("Loading EpiParam")
    ep = EpidemiologicalParameters()

    # shift delays
    ep.generation_interval["mean"] = (ep.generation_interval["mean"] +
                                      args.gen_int_mean_shift)

    ep.onset_to_death_delay["mean"] = (ep.onset_to_death_delay["mean"] +
                                       args.death_delay_mean_shift)

    ep.onset_to_case_delay["mean"] = (ep.onset_to_case_delay["mean"] +
                                      args.cases_delay_mean_shift)

    ep.generate_delays()

    model_func = get_model_func_from_str(args.model_type)
    ta = get_target_accept_from_model_str(args.model_type)
示例#3
0
    r0_scale = np.clip(0.3 + 0.1 * np.random.normal(), a_min=0.1, a_max=0.5)

    rw_period = np.random.choice([5, 7, 9, 11, 14])
    n_days_seeding = np.random.choice([5, 7, 9, 11, 14])

    print("Loading Data")
    data = preprocess_data(get_data_path())
    data.featurize(**config["featurize_kwargs"])
    data.mask_new_variant(
        new_variant_fraction_fname=get_new_variant_path(),
        maximum_fraction_voc=float(max_frac_voc),
    )
    data.mask_from_date("2021-01-09")

    print("Loading EpiParam")
    ep = EpidemiologicalParameters()

    # shift delays
    ep.generation_interval["mean"] = (ep.generation_interval["mean"] +
                                      gi_shift)

    ep.onset_to_death_delay["mean"] = (ep.onset_to_death_delay["mean"] +
                                       dd_shift)

    ep.onset_to_case_delay["mean"] = (ep.onset_to_case_delay["mean"] +
                                      cd_shift)

    ep.generate_delays()

    model_func = get_model_func_from_str(args.model_type)
    ta = get_target_accept_from_model_str(args.model_type)