示例#1
0
			Particle.gbest=np.copy(temp2)
			gbest_fit=fit_val2		

if flag==0:
	Particle.gbest=np.copy(base)

print gbest_fit
#iterations of hybrid algo starts here
gbest_fit=fit.calculate_fitness(Particle.gbest,cost)
temp_fit=gbest_fit
flag=0

for k in range(0,iterations):

	for i in range(0,no_of_particles):
		child=ero.cross_over(pop[i].pos,pop[i].pbest)
		fit_val=fit.calculate_fitness(child,cost)

		#if fitness of child is higher than pbest,update pbest
		if fit_val<pop[i].pbest_fit:
			pop[i].pbest=np.copy(child)
			pop[i].pbest_fit=fit_val

		#if fitness of child is higher than gbest,update gbest
		#if fit_val<gbest_fit:
		#	Particle.gbest=np.copy(child)
		#	gbest_fit=fit_val
		#	flag=0

		child=ero.cross_over(pop[i].pos,Particle.gbest)
		fit_val=fit.calculate_fitness(child,cost)
示例#2
0
		fit_val2=fit.calculate_fitness(pop[indx2],cost)
		if fit_val1 <= fit_val2:
			new_pop[i]=pop[indx1]
		else:
			new_pop[i]=pop[indx2]		
	
	#print new_pop		
	#perform cross over b/w randomly selected parents
	for i in range(0,pop_size):
		randno=random.uniform(0,1)
		indx1=random.randrange(0,pop_size)
		indx2=random.randrange(0,pop_size)
		if(randno>=0.5):
			#print new_pop[indx1]
			#print new_pop[indx2]
			new_pop[i]=ero.cross_over(new_pop[indx1],new_pop[indx2])

	#print 'after cross over'	
	#print new_pop	
	#perform mutation
	#mutation probability = 0.1	
	#mutation uses swap operator
	if(k%10==0):
		for i in range(0,pop_size):
			randno=random.uniform(0,1)
			if(randno>=0.5):
				pos1=random.randrange(0,cities)
				pos2=random.randrange(0,cities)
				temp=new_pop[i][pos1]
				new_pop[i][pos1]=new_pop[i][pos2]
				new_pop[i][pos2]=temp
示例#3
0
            Particle.gbest = np.copy(temp2)
            gbest_fit = fit_val2

if flag == 0:
    Particle.gbest = np.copy(base)

print gbest_fit
#iterations of hybrid algo starts here
gbest_fit = fit.calculate_fitness(Particle.gbest, cost)
temp_fit = gbest_fit
flag = 0

for k in range(0, iterations):

    for i in range(0, no_of_particles):
        child = ero.cross_over(pop[i].pos, pop[i].pbest)
        fit_val = fit.calculate_fitness(child, cost)

        #if fitness of child is higher than pbest,update pbest
        if fit_val < pop[i].pbest_fit:
            pop[i].pbest = np.copy(child)
            pop[i].pbest_fit = fit_val

        #if fitness of child is higher than gbest,update gbest
        #if fit_val<gbest_fit:
        #	Particle.gbest=np.copy(child)
        #	gbest_fit=fit_val
        #	flag=0

        child = ero.cross_over(pop[i].pos, Particle.gbest)
        fit_val = fit.calculate_fitness(child, cost)
示例#4
0
        fit_val2 = fit.calculate_fitness(pop[indx2], cost)
        if fit_val1 <= fit_val2:
            new_pop[i] = pop[indx1]
        else:
            new_pop[i] = pop[indx2]

    #print new_pop
    #perform cross over b/w randomly selected parents
    for i in range(0, pop_size):
        randno = random.uniform(0, 1)
        indx1 = random.randrange(0, pop_size)
        indx2 = random.randrange(0, pop_size)
        if (randno >= 0.5):
            #print new_pop[indx1]
            #print new_pop[indx2]
            new_pop[i] = ero.cross_over(new_pop[indx1], new_pop[indx2])

    #print 'after cross over'
    #print new_pop
    #perform mutation
    #mutation probability = 0.1
    #mutation uses swap operator
    if (k % 10 == 0):
        for i in range(0, pop_size):
            randno = random.uniform(0, 1)
            if (randno >= 0.5):
                pos1 = random.randrange(0, cities)
                pos2 = random.randrange(0, cities)
                temp = new_pop[i][pos1]
                new_pop[i][pos1] = new_pop[i][pos2]
                new_pop[i][pos2] = temp