示例#1
0
文件: base.py 项目: oysteoh/ert
    def _create_snapshot(self):
        reals = {}
        for real in self.get_active_reals():
            reals[str(real.get_iens())] = Realization(
                active=True,
                status=state.REALIZATION_STATE_WAITING,
            )
            for step in real.get_steps():
                reals[str(real.get_iens())].steps[str(step.get_id())] = Step(
                    status=state.STEP_STATE_UNKNOWN
                )
                for job in step.get_jobs():
                    reals[str(real.get_iens())].steps[str(step.get_id())].jobs[
                        str(job.get_id())
                    ] = Job(
                        status=state.JOB_STATE_START,
                        data={},
                        name=job.get_name(),
                    )
        top = SnapshotDict(
            reals=reals,
            status=state.ENSEMBLE_STATE_UNKNOWN,
            metadata=self.get_metadata(),
        )

        return Snapshot(top.dict())
示例#2
0
def full_snapshot() -> Snapshot:
    real = Realization(
        status=REALIZATION_STATE_UNKNOWN,
        active=True,
        steps={
            "0":
            Step(
                status="",
                jobs={
                    "0":
                    Job(
                        start_time=dt.now(),
                        end_time=dt.now(),
                        name="poly_eval",
                        status=JOB_STATE_START,
                        error="error",
                        stdout="std_out_file",
                        stderr="std_err_file",
                        data={
                            CURRENT_MEMORY_USAGE: "123",
                            MAX_MEMORY_USAGE: "312",
                        },
                    ),
                    "1":
                    Job(
                        start_time=dt.now(),
                        end_time=dt.now(),
                        name="poly_postval",
                        status=JOB_STATE_START,
                        error="error",
                        stdout="std_out_file",
                        stderr="std_err_file",
                        data={
                            CURRENT_MEMORY_USAGE: "123",
                            MAX_MEMORY_USAGE: "312",
                        },
                    ),
                },
            )
        },
    )
    snapshot = SnapshotDict(
        status=ENSEMBLE_STATE_STARTED,
        reals={},
    )
    for i in range(0, 100):
        snapshot.reals[str(i)] = copy.deepcopy(real)

    return Snapshot(snapshot.dict())
示例#3
0
 pytest.param(
     [
         CloudEvent(
             {"source": "/", "type": ids.EVTYPE_EE_SNAPSHOT},
             data={
                 **(build_snapshot(["0", "1"]).to_dict()),
                 "iter": 0,
             },
         ),
         CloudEvent(
             {"source": "/", "type": ids.EVTYPE_EE_SNAPSHOT_UPDATE},
             data={
                 **(
                     build_partial(["0", "1"])
                     .update_step(
                         "0", "0", Step(status=state.STEP_STATE_SUCCESS)
                     )
                     .to_dict()
                 ),
                 "iter": 0,
             },
         ),
     ],
     [("_phase_count", 1)],
     0.5,
     id="ensemble_experiment_50",
 ),
 pytest.param(
     [
         CloudEvent(
             {"source": "/", "type": ids.EVTYPE_EE_SNAPSHOT},
示例#4
0
    def _create_snapshot_dict(
        self,
        run_context: ErtRunContext,
        detailed_progress: typing.Tuple[typing.Dict, int],
        iter_: int,
    ) -> typing.Optional[SnapshotDict]:
        """create a snapshot of a run_context and detailed_progress.
        detailed_progress is expected to be a tuple of a realization_progress
        dict and iteration number. iter_ represents the current assimilation
        cycle."""
        self._set_iter_queue(iter_, self._model._job_queue)

        snapshot = SnapshotDict(
            status=ENSEMBLE_STATE_STARTED,
            reals={},
            metadata={"iter": iter_},
        )

        forward_model = self._model.get_forward_model()

        iter_to_progress, progress_iter = detailed_progress
        if progress_iter != iter_:
            logger.debug(
                f"run_context iter ({iter_}) and detailed_progress ({progress_iter} iter differed"
            )

        if iter_ in self._iter_queue and self._iter_queue[iter_] is not None:
            queue_snapshot = self._iter_queue[iter_].snapshot()
        else:
            queue_snapshot = None

        enumerated = 0
        for iens, run_arg in _enumerate_run_context(run_context):
            real_id = str(iens)
            enumerated += 1
            if not _is_iens_active(iens, run_context):
                continue

            status = JobStatusType.JOB_QUEUE_UNKNOWN
            if queue_snapshot is not None and iens in queue_snapshot:
                status = JobStatusType.from_string(queue_snapshot[iens])

            snapshot.reals[real_id] = Realization(
                status=queue_status_to_real_state(status),
                active=True,
                steps={})

            step = Step(status="", jobs={})
            snapshot.reals[real_id].steps["0"] = step

            for index in range(0, len(forward_model)):
                ext_job = forward_model.iget_job(index)
                step.jobs[str(index)] = Job(name=ext_job.name(),
                                            status=JOB_STATE_START,
                                            data={})

            progress = iter_to_progress[iter_].get(iens, None)
            if not progress:
                continue

            jobs = progress[0]
            for idx, fm in enumerate(jobs):
                job = step.jobs[str(idx)]

                job.start_time = fm.start_time
                job.end_time = fm.end_time
                job.name = fm.name
                job.status = _map_job_state(fm.status)
                job.error = fm.error
                job.stdout = fm.std_out_file
                job.stderr = fm.std_err_file
                job.data = {
                    CURRENT_MEMORY_USAGE: fm.current_memory_usage,
                    MAX_MEMORY_USAGE: fm.max_memory_usage,
                }

        if enumerated == 0:
            logger.debug("enumerated 0 items from run_context, it is gone")
            return None

        return snapshot
示例#5
0
                 "source": "/",
                 "type": ids.EVTYPE_EE_SNAPSHOT
             },
             data={
                 **(build_snapshot(["0", "1"]).to_dict()),
                 "iter": 0,
             },
         ),
         CloudEvent(
             {
                 "source": "/",
                 "type": ids.EVTYPE_EE_SNAPSHOT_UPDATE
             },
             data={
                 **(build_partial(["0", "1"]).update_step(
                        "0", "0", Step(status=state.STEP_STATE_SUCCESS)).to_dict(
                    )),
                 "iter":
                 0,
             },
         ),
     ],
     [("_phase_count", 1)],
     0.5,
     id="ensemble_experiment_50",
 ),
 pytest.param(
     [
         CloudEvent(
             {
                 "source": "/",