def generate_distance(xml_filename, no_data_value):
    """Provides the main processing algorithm for generating the distance 
       to cloud product.

    Args:
        xml_filename <str>: Filename for the ESPA Metadata XML
        no_data_value <float>: No data (fill) value to use
    """

    logger = logging.getLogger(__name__)

    # XML metadata
    espa_metadata = Metadata(xml_filename)
    espa_metadata.parse()

    src_info = retrieve_metadata_information(espa_metadata)

    # Determine output information
    sensor_code = get_satellite_sensor_code(xml_filename)
    dataset = gdal.Open(src_info.qa_filename)
    output_srs = osr.SpatialReference()
    output_srs.ImportFromWkt(dataset.GetProjection())
    output_transform = dataset.GetGeoTransform()
    samps = dataset.RasterXSize
    lines = dataset.RasterYSize
    del dataset

    # Build distance to cloud information in memory
    distance_to_cloud = calculate_distance(src_info, no_data_value)

    # Build distance to cloud filename
    distance_img_filename = ''.join([xml_filename.split('.xml')[0],
                                    '_lst_cloud_distance', '.img'])

    # Write distance to cloud product 
    write_distance_to_cloud_product(samps=samps,
                                    lines=lines,
                                    transform=output_transform,
                                    wkt=output_srs.ExportToWkt(),
                                    no_data_value=no_data_value,
                                    filename=distance_img_filename,
                                    file_data=distance_to_cloud)

    add_cloud_distance_band_to_xml(espa_metadata=espa_metadata,
                                   filename=distance_img_filename,
                                   sensor_code=sensor_code,
                                   no_data_value=no_data_value)
示例#2
0
def main():
    """Main processing for building the points list
    """

    # Command Line Arguments
    args = retrieve_command_line_arguments()

    # Check logging level
    logging_level = logging.INFO
    if args.debug:
        logging_level = logging.DEBUG

    # Setup the default logger format and level.  Log to STDOUT.
    logging.basicConfig(format=('%(asctime)s.%(msecs)03d %(process)d'
                                ' %(levelname)-8s'
                                ' %(filename)s:%(lineno)d:'
                                '%(funcName)s -- %(message)s'),
                        datefmt='%Y-%m-%d %H:%M:%S',
                        level=logging_level,
                        stream=sys.stdout)
    logger = logging.getLogger(__name__)

    logger.info('*** Begin Determine Grid Points ***')

    # XML Metadata
    espa_metadata = Metadata()
    espa_metadata.parse(xml_filename=args.xml_filename)

    # Figure out the gdal objects
    gdal_objs = initialize_gdal_objects(espa_metadata=espa_metadata)

    # Determin NARR adjusted data bounds
    data_bounds = determine_adjusted_data_bounds(espa_metadata=espa_metadata,
                                                 gdal_objs=gdal_objs)
    logger.debug(str(data_bounds))

    # Generate the point grid
    generate_point_grid(debug=args.debug,
                        gdal_objs=gdal_objs,
                        data_bounds=data_bounds,
                        data_path=args.data_path)

    logger.info('*** Determine Grid Points - Complete ***')
示例#3
0
def main():
    """Main processing for building the points list
    """

    # Command Line Arguments
    args = retrieve_command_line_arguments()

    # Check logging level
    logging_level = logging.INFO
    if args.debug:
        logging_level = logging.DEBUG

    # Setup the default logger format and level.  Log to STDOUT.
    logging.basicConfig(format=('%(asctime)s.%(msecs)03d %(process)d'
                                ' %(levelname)-8s'
                                ' %(filename)s:%(lineno)d:'
                                '%(funcName)s -- %(message)s'),
                        datefmt='%Y-%m-%d %H:%M:%S',
                        level=logging_level,
                        stream=sys.stdout)
    logger = logging.getLogger(__name__)

    logger.info('*** Begin MODTRAN Tape5 Generation ***')

    # XML Metadata
    espa_metadata = Metadata()
    espa_metadata.parse(xml_filename=args.xml_filename)

    # Load the grid information
    (grid_points, dummy1, dummy2) = read_grid_points()

    # Load the standard atmospheric layers information
    std_atmos = [
        layer for layer in load_std_atmosphere(data_path=args.data_path)
    ]

    generate_modtran_tape5_files(espa_metadata=espa_metadata,
                                 data_path=args.data_path,
                                 std_atmos=std_atmos,
                                 grid_points=grid_points)

    logger.info('*** MODTRAN Tape5 Generation - Complete ***')
def remove_products_from_xml(self):
    """Remove the specified products from the XML file

    The file is read into memory, processed, and written back out with out
    the specified products.
    """
    # Create and load the metadata object
    espa_metadata = Metadata(xml_filename=self._xml_filename)

    # Search for and remove the items
    for band in espa_metadata.xml_object.bands.band:
        if band.attrib['product'] in products_to_remove:
            # Business logic to always keep the radsat_qa band if bt,
            # or toa, or sr output was chosen
            if (band.attrib['name'] == ''
                    and (options['include_sr'] or options['include_sr_toa']
                         or options['include_sr_thermal'])):
                continue
            else:
                self.remove_band_from_xml(band)

    # Validate the XML
    espa_metadata.validate()

    # Write it to the XML file
    espa_metadata.write(xml_filename=self._xml_filename)
def main(inputxmlfile, outputxmlfile, hdffile):
    mm = Metadata(xml_filename=inputxmlfile)
    mm.parse()
    hls_product = 'hls'
    if hdffile == 'one':
        for band in mm.xml_object.bands.iterchildren():
            if band.get('name') == 'sr_band1':
                band.set('name', 'band01')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band2':
                band.set('name', 'blue')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band3':
                band.set('name', 'green')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band4':
                band.set('name', 'red')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band5':
                band.set('name', 'band05')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band6':
                band.set('name', 'band06')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band7':
                band.set('name', 'band07')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band8':
                band.set('name', 'band08')
                band.set('product', hls_product)
    elif hdffile == 'two':
        for band in mm.xml_object.bands.iterchildren():
            if band.get('name') == 'sr_band8a':
                band.set('name', 'band8a')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band9':
                band.set('name', 'band09')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band10':
                band.set('name', 'band10')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band11':
                band.set('name', 'band11')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_band12':
                band.set('name', 'band12')
                band.set('product', hls_product)
            elif band.get('name') == 'sr_aerosol':
                band.set('name', 'CLOUD')
                band.set('product', hls_product)

    for band in mm.xml_object.bands.iterchildren():
        if band.get('product') != hls_product:
            print((band.get('name')))
            mm.xml_object.bands.remove(band)

    mm.write(xml_filename=outputxmlfile)
def main():
    """Core processing for the application
    """

    # Command Line Arguments
    args = retrieve_command_line_arguments()

    # Setup the logging level
    log_level = logging.INFO
    if args.debug:
        log_level = logging.DEBUG

    # Setup the default logger format and level.  Log to STDOUT.
    logging.basicConfig(format=('%(asctime)s.%(msecs)03d %(process)d'
                                ' %(levelname)-8s'
                                ' %(filename)s:%(lineno)d:'
                                '%(funcName)s -- %(message)s'),
                        datefmt='%Y-%m-%d %H:%M:%S',
                        level=log_level,
                        stream=sys.stdout)
    logger = logging.getLogger(__name__)

    logger.info('*** Begin Extract Auxiliary NARR Data ***')

    # XML Metadata
    espa_metadata = Metadata()
    espa_metadata.parse(xml_filename=args.xml_filename)

    try:
        logger.info('Extracting ST AUX data')
        extract_narr_aux_data(espa_metadata, args.aux_path)

    except Exception:
        logger.exception('Failed processing auxiliary NARR data')
        raise

    logger.info('*** Extract Auxiliary NARR Data - Complete ***')
class TestMetadata(unittest.TestCase):
    """Test a few things, and expand on it someday"""

    def setUp(self):

        xml_filename = 'unittests/test.xml'
        self.mm = Metadata(xml_filename=xml_filename)
        self.mm.parse()

    def tearDown(self):
        pass

    def test_find_version(self):
        self.assertEqual(self.mm.xml_object.get('version'), '2.0')

    def test_find_corners(self):
        self.assertEqual(self.mm.xml_object.global_metadata.corner[0]
                         .attrib['location'], 'UL')
        self.assertEqual(self.mm.xml_object.global_metadata.corner[1]
                         .attrib['location'], 'LR')

    def test_find_band_names(self):
        self.assertEqual(self.mm.xml_object.bands.band[0].get('name'),
                         'band1')
        self.assertEqual(self.mm.xml_object.bands.band[1].get('name'),
                         'band2')
        self.assertEqual(self.mm.xml_object.bands.band[2].get('name'),
                         'band3')
        self.assertEqual(self.mm.xml_object.bands.band[3].get('name'),
                         'band4')
        self.assertEqual(self.mm.xml_object.bands.band[4].get('name'),
                         'band5')
        self.assertEqual(self.mm.xml_object.bands.band[5].get('name'),
                         'band6')

    def test_write_success(self):
        # Also tests for successful validation
        self.mm.write(xml_filename='walnuts_pass.xml')
        self.assertTrue(os.path.exists('walnuts_pass.xml') == 1)
        os.unlink('walnuts_pass.xml')

    def test_validation_fail(self):
        myE = objectify.ElementMaker(annotate=False, namespace=None,
                                     nsmap=None)
        self.mm.xml_object.animals = myE.root()
        self.mm.xml_object.animals.tiger = myE.frog('white')
        self.mm.xml_object.animals.frog = myE.frog('green')

        with self.assertRaises(XMLError):
            self.mm.validate()
def main(inputxmlfile, outputxmlfile,):
    mm = Metadata(xml_filename=inputxmlfile)
    mm.parse()
    hls_product = 'hls'
    for band in mm.xml_object.bands.iterchildren():
        if band.get('name') == 'sr_band1':
            band.set('name', 'band01')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band2':
            band.set('name', 'band02-blue')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band3':
            band.set('name', 'band03-green')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band4':
            band.set('name', 'band04-red')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band5':
            band.set('name', 'band05')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band6':
            band.set('name', 'band06')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_band7':
            band.set('name', 'band07')
            band.set('product', hls_product)
        elif band.get('name') == 'radsat_qa':
            band.set('name', 'bandQA')
            band.set('product', hls_product)
        elif band.get('name') == 'toa_band9':
            band.set('name', 'band09')
            band.set('product', hls_product)
        elif band.get('name') == 'bt_band10':
            band.set('name', 'band10')
            band.set('product', hls_product)
        elif band.get('name') == 'bt_band11':
            band.set('name', 'band11')
            band.set('product', hls_product)
        elif band.get('name') == 'sr_aerosol':
            band.set('name', 'CLOUD')
            band.set('product', hls_product)

    for band in mm.xml_object.bands.iterchildren():
        if band.get('product') != hls_product:
            mm.xml_object.bands.remove(band)

    mm.write(xml_filename=outputxmlfile)
class TestMetadata(unittest.TestCase):
    """Test a few things, and expand on it someday"""
    def setUp(self):

        xml_filename = 'unittests/test.xml'
        self.mm = Metadata(xml_filename=xml_filename)
        self.mm.parse()

    def tearDown(self):
        pass

    def test_find_version(self):
        self.assertEqual(self.mm.xml_object.get('version'), '2.0')

    def test_find_corners(self):
        self.assertEqual(
            self.mm.xml_object.global_metadata.corner[0].attrib['location'],
            'UL')
        self.assertEqual(
            self.mm.xml_object.global_metadata.corner[1].attrib['location'],
            'LR')

    def test_find_band_names(self):
        self.assertEqual(self.mm.xml_object.bands.band[0].get('name'), 'band1')
        self.assertEqual(self.mm.xml_object.bands.band[1].get('name'), 'band2')
        self.assertEqual(self.mm.xml_object.bands.band[2].get('name'), 'band3')
        self.assertEqual(self.mm.xml_object.bands.band[3].get('name'), 'band4')
        self.assertEqual(self.mm.xml_object.bands.band[4].get('name'), 'band5')
        self.assertEqual(self.mm.xml_object.bands.band[5].get('name'), 'band6')

    def test_write_success(self):
        # Also tests for successful validation
        self.mm.write(xml_filename='walnuts_pass.xml')
        self.assertTrue(os.path.exists('walnuts_pass.xml') == 1)
        os.unlink('walnuts_pass.xml')

    def test_validation_fail(self):
        myE = objectify.ElementMaker(annotate=False,
                                     namespace=None,
                                     nsmap=None)
        self.mm.xml_object.animals = myE.root()
        self.mm.xml_object.animals.tiger = myE.frog('white')
        self.mm.xml_object.animals.frog = myE.frog('green')

        with self.assertRaises(XMLError):
            self.mm.validate()
示例#10
0
def generate_qa(xml_filename, no_data_value):
    """Provides the main processing algorithm for generating the QA product.

    Args:
        xml_filename <str>: Filename for the ESPA Metadata XML
        no_data_value <float>: No data (fill) value to use
    """

    logger = logging.getLogger(__name__)

    # XML metadata
    espa_metadata = Metadata(xml_filename)
    espa_metadata.parse()

    radiance_src_info \
        = retrieve_metadata_information(espa_metadata,
                                        'st_thermal_radiance')
    transmission_src_info \
        = retrieve_metadata_information(espa_metadata,
                                        'st_atmospheric_transmittance')
    upwelled_src_info \
        = retrieve_metadata_information(espa_metadata,
                                        'st_upwelled_radiance')
    downwelled_src_info \
        = retrieve_metadata_information(espa_metadata,
                                        'st_downwelled_radiance')
    emis_src_info = retrieve_metadata_information(espa_metadata, 'emis')
    emis_stdev_src_info \
        = retrieve_metadata_information(espa_metadata, 'emis_stdev')
    satellite = espa_metadata.xml_object.global_metadata.satellite
    thermal_info = retrieve_thermal_constants(espa_metadata, satellite)

    # Determine output information.  Make it like the emissivity band
    sensor_code = get_satellite_sensor_code(xml_filename)
    dataset = gdal.Open(emis_src_info.filename)
    output_srs = osr.SpatialReference()
    output_srs.ImportFromWkt(dataset.GetProjection())
    output_transform = dataset.GetGeoTransform()
    samps = dataset.RasterXSize
    lines = dataset.RasterYSize
    del dataset

    # Build cloud distance filename
    distance_img_filename = ''.join(
        [xml_filename.split('.xml')[0], '_st_cloud_distance', '.img'])

    # Build QA information in memory
    qa = calculate_qa(radiance_src_info.filename,
                      transmission_src_info.filename,
                      upwelled_src_info.filename, downwelled_src_info.filename,
                      emis_src_info.filename, emis_stdev_src_info.filename,
                      distance_img_filename, satellite, float(thermal_info.k1),
                      float(thermal_info.k2), no_data_value)

    # Build QA filename
    qa_img_filename = ''.join(
        [xml_filename.split('.xml')[0], '_st_uncertainty', '.img'])

    # Write QA product
    write_qa_product(samps=samps,
                     lines=lines,
                     transform=output_transform,
                     wkt=output_srs.ExportToWkt(),
                     no_data_value=no_data_value,
                     filename=qa_img_filename,
                     file_data=qa)

    add_qa_band_to_xml(espa_metadata=espa_metadata,
                       filename=qa_img_filename,
                       sensor_code=sensor_code,
                       no_data_value=no_data_value)
示例#11
0
def generate_emissivity_data(xml_filename, server_name, server_path,
                             st_data_dir, no_data_value, intermediate):
    """Provides the main processing algorithm for generating the estimated
       Landsat emissivity product.  It produces the final emissivity product.

    Args:
        xml_filename <str>: Filename for the ESPA Metadata XML
        server_name <str>: Name of the ASTER GED server
        server_path <str>: Path on the ASTER GED server
        st_data_dir <str>: Location of the ST data files
        no_data_value <int>: No data (fill) value to use
        intermediate <bool>: Keep any intermediate products generated
    """

    logger = logging.getLogger(__name__)

    # XML metadata
    espa_metadata = Metadata(xml_filename)
    espa_metadata.parse()

    src_info = emis_util.retrieve_metadata_information(espa_metadata)

    # Determine output information
    sensor_code = emis_util.get_satellite_sensor_code(xml_filename)
    dataset = gdal.Open(src_info.toa.red.name)
    output_srs = osr.SpatialReference()
    output_srs.ImportFromWkt(dataset.GetProjection())
    output_transform = dataset.GetGeoTransform()
    samps = dataset.RasterXSize
    lines = dataset.RasterYSize
    del dataset

    # Initialize coefficients.
    ASTER_GED_WATER = 0.988
    coefficients = sensor_coefficients(espa_metadata.xml_object
                                       .global_metadata.satellite)

    # ====================================================================
    # Build NDVI in memory
    (ls_ndvi_data, ndvi_no_data_locations) = (
        generate_landsat_ndvi(src_info, no_data_value))

    if intermediate:
        logger.info('Writing Landsat NDVI raster')
        util.Geo.generate_raster_file(gdal.GetDriverByName('GTiff'),
                                      'internal_landsat_ndvi.tif',
                                      ls_ndvi_data,
                                      samps,
                                      lines,
                                      output_transform,
                                      output_srs.ExportToWkt(),
                                      no_data_value,
                                      gdal.GDT_Float32)

    # ====================================================================
    # Determine NDSI and Snow locations
    (snow_locations, ndsi_no_data_locations) = (
        snow_and_ndsi_locations(src_info, no_data_value))

    ls_emis_warped_name = 'landsat_emis_warped.tif'
    aster_ndvi_warped_name = 'aster_ndvi_warped.tif'

    # Build the estimated Landsat EMIS data from the ASTER GED data and
    # warp it to the Landsat scenes projection and image extents
    # For convenience the ASTER NDVI is also extracted and warped to the
    # Landsat scenes projection and image extents
    logger.info('Build thermal emissivity band and retrieve ASTER NDVI')
    build_ls_emis_data(server_name=server_name,
                       server_path=server_path,
                       st_data_dir=st_data_dir,
                       src_info=src_info,
                       coefficients=coefficients,
                       ls_emis_warped_name=ls_emis_warped_name,
                       aster_ndvi_warped_name=aster_ndvi_warped_name,
                       no_data_value=no_data_value,
                       intermediate=intermediate)

    (ls_emis_data, ls_emis_gap_locations, ls_emis_no_data_locations,
     aster_ndvi_data, aster_ndvi_gap_locations, aster_ndvi_no_data_locations) \
         = (extract_warped_data(ls_emis_warped_name=ls_emis_warped_name,
                                aster_ndvi_warped_name=aster_ndvi_warped_name,
                                no_data_value=no_data_value,
                                intermediate=intermediate))

    # Replace NDVI values greater than 1 with 1
    ls_ndvi_data[ls_ndvi_data > 1.0] = 1
    aster_ndvi_data[aster_ndvi_data > 1.0] = 1

    logger.info('Normalizing Landsat and ASTER NDVI')
    # Normalize Landsat NDVI by max value
    max_ls_ndvi = ls_ndvi_data.max()
    min_ls_ndvi = ls_ndvi_data.min()
    logger.info('Max LS NDVI {0}'.format(max_ls_ndvi))
    ls_ndvi_data = ls_ndvi_data / float(max_ls_ndvi)

    if intermediate:
        logger.info('Writing Landsat NDVI NORM MAX raster')
        util.Geo.generate_raster_file(gdal.GetDriverByName('GTiff'),
                                      'internal_landsat_ndvi_norm_max.tif',
                                      ls_ndvi_data,
                                      samps,
                                      lines,
                                      output_transform,
                                      output_srs.ExportToWkt(),
                                      no_data_value,
                                      gdal.GDT_Float32)

    # Normalize ASTER NDVI by max value
    max_aster_ndvi = aster_ndvi_data.max()
    logger.info('Max ASTER NDVI {0}'.format(max_aster_ndvi))
    aster_ndvi_data = aster_ndvi_data / float(max_aster_ndvi)

    if intermediate:
        logger.info('Writing Aster NDVI NORM MAX raster')
        util.Geo.generate_raster_file(gdal.GetDriverByName('GTiff'),
                                      'internal_aster_ndvi_norm_max.tif',
                                      aster_ndvi_data,
                                      samps,
                                      lines,
                                      output_transform,
                                      output_srs.ExportToWkt(),
                                      no_data_value,
                                      gdal.GDT_Float32)

    # Soil - From prototype code variable name
    logger.info('Calculating bare soil component')

    # Get pixels with significant bare soil component
    bare_locations = np.where(aster_ndvi_data < 0.5)

    # Only calculate soil component for these pixels
    ls_emis_bare = ((ls_emis_data[bare_locations]
                     - 0.975 * aster_ndvi_data[bare_locations])
                    / (1 - aster_ndvi_data[bare_locations]))

    # Memory cleanup
    del aster_ndvi_data

    # Calculate veg adjustment with Landsat
    logger.info('Calculating EMIS Final')

    # Adjust estimated Landsat EMIS for vegetation and snow, to generate
    # the final Landsat EMIS data
    logger.info('Adjusting estimated EMIS for vegetation')
    ls_emis_final = (coefficients.vegetation_coeff * ls_ndvi_data +
                     ls_emis_data * (1.0 - ls_ndvi_data))

    # Calculate fractional vegetation cover
    fv_L = 1.0 - (max_ls_ndvi - ls_ndvi_data) / (max_ls_ndvi - min_ls_ndvi)

    # Memory cleanup
    del ls_ndvi_data

    # Add soil component pixels
    ls_emis_final[bare_locations] = ls_emis_bare

    # Memory cleanup
    del ls_emis_bare
    del bare_locations

    # Set fill values on granule edge to nan
    fill_locations = np.where(np.isnan(fv_L))
    ls_emis_final[fill_locations] = np.nan

    # Memory cleanup
    del fv_L
    del fill_locations

    # Final check for emissivity values greater than 1.  Reset values greater
    # than 1 to nominal veg/water value (should be very few, if any)
    ls_emis_final[ls_emis_final > 1.0] = ASTER_GED_WATER

    # Medium snow
    logger.info('Adjusting estimated EMIS for snow')
    ls_emis_final[snow_locations] = coefficients.snow_emissivity

    # Memory cleanup
    del snow_locations

    # Reset water values
    ls_emis_final[np.where(ls_emis_data > ASTER_GED_WATER)] = ASTER_GED_WATER

    # Memory cleanup
    del ls_emis_data

    # Add the fill and scan gaps and ASTER gaps back into the results,
    # since they may have been lost
    logger.info('Adding fill and data gaps back into the estimated'
                ' Landsat emissivity results')
    ls_emis_final[ls_emis_no_data_locations] = no_data_value
    ls_emis_final[ls_emis_gap_locations] = no_data_value
    ls_emis_final[aster_ndvi_no_data_locations] = no_data_value
    ls_emis_final[aster_ndvi_gap_locations] = no_data_value
    ls_emis_final[ndvi_no_data_locations] = no_data_value
    ls_emis_final[ndsi_no_data_locations] = no_data_value

    # Memory cleanup
    del ls_emis_no_data_locations
    del ls_emis_gap_locations
    del aster_ndvi_no_data_locations
    del aster_ndvi_gap_locations
    del ndvi_no_data_locations
    del ndsi_no_data_locations

    # Write emissivity data and metadata
    ls_emis_img_filename = ''.join([xml_filename.split('.xml')[0],
                                    '_emis', '.img'])

    emis_util.write_emissivity_product(samps=samps,
                                       lines=lines,
                                       transform=output_transform,
                                       wkt=output_srs.ExportToWkt(),
                                       no_data_value=no_data_value,
                                       filename=ls_emis_img_filename,
                                       file_data=ls_emis_final)

    emis_util.add_emissivity_band_to_xml(espa_metadata=espa_metadata,
                                         filename=ls_emis_img_filename,
                                         sensor_code=sensor_code,
                                         no_data_value=no_data_value,
                                         band_type='mean')

    # Memory cleanup
    del ls_emis_final
def generate_emissivity_data(xml_filename, server_name, server_path,
                             st_data_dir, no_data_value, intermediate):
    """Provides the main processing algorithm for generating the estimated
       Landsat emissivity product.  It produces the final emissivity product.

    Args:
        xml_filename <str>: Filename for the ESPA Metadata XML
        server_name <str>: Name of the ASTER GED server
        server_path <str>: Path on the ASTER GED server
        st_data_dir <str>: Location of the ST data files
        no_data_value <int>: No data (fill) value to use
        intermediate <bool>: Keep any intermediate products generated
    """

    logger = logging.getLogger(__name__)

    # XML metadata
    espa_metadata = Metadata(xml_filename)
    espa_metadata.parse()

    src_info = emis_util.retrieve_metadata_information(espa_metadata)

    # Determine output information
    sensor_code = emis_util.get_satellite_sensor_code(xml_filename)
    dataset = gdal.Open(src_info.toa.red.name)
    output_srs = osr.SpatialReference()
    output_srs.ImportFromWkt(dataset.GetProjection())
    output_transform = dataset.GetGeoTransform()
    samps = dataset.RasterXSize
    lines = dataset.RasterYSize
    del dataset

    ls_emis_stdev_warped_name = 'landsat_emis_stdev_warped.tif'

    # Build the estimated Landsat EMIS data from the ASTER GED data and
    # warp it to the Landsat scenes projection and image extents
    # For convenience the ASTER NDVI is also extracted and warped to the
    # Landsat scenes projection and image extents
    logger.info('Build thermal emissivity standard deviation band ')
    build_ls_emis_data(server_name=server_name,
                       server_path=server_path,
                       st_data_dir=st_data_dir,
                       src_info=src_info,
                       ls_emis_stdev_warped_name=ls_emis_stdev_warped_name,
                       no_data_value=no_data_value,
                       intermediate=intermediate)

    (ls_emis_stdev_data, ls_emis_stdev_no_data_locations) = (
        extract_warped_data(
            ls_emis_stdev_warped_name=ls_emis_stdev_warped_name,
            no_data_value=no_data_value,
            intermediate=intermediate))

    # Add the fill back into the results, since the may have been lost
    logger.info('Adding fill back into the estimated Landsat emissivity'
                ' stdev results')
    ls_emis_stdev_data[ls_emis_stdev_no_data_locations] = no_data_value

    # Memory cleanup
    del ls_emis_stdev_no_data_locations

    # Write emissivity standard deviation data and metadata
    ls_emis_stdev_img_filename = ''.join([xml_filename.split('.xml')[0],
                                          '_emis_stdev', '.img'])

    emis_util.write_emissivity_product(samps=samps,
                                       lines=lines,
                                       transform=output_transform,
                                       wkt=output_srs.ExportToWkt(),
                                       no_data_value=no_data_value,
                                       filename=ls_emis_stdev_img_filename,
                                       file_data=ls_emis_stdev_data)

    emis_util.add_emissivity_band_to_xml(espa_metadata=espa_metadata,
                                         filename=ls_emis_stdev_img_filename,
                                         sensor_code=sensor_code,
                                         no_data_value=no_data_value,
                                         band_type='stdev')

    # Memory cleanup
    del ls_emis_stdev_data
示例#13
0
def get_metadata(xml_filename):
    """Get various values from the specified metadata file"""

    # Initialize values
    lon1 = -9999.0
    lon2 = -9999.0
    lat1 = -9999.0
    lat2 = -9999.0
    number_lines = -9999
    number_samples = -9999
    scene_center_time = ''

    # Verify that the XML file exists
    if not os.path.exists(xml_filename):
        message = 'XML file does not exist or is not accessible: {0}'.format(
            xml_filename)
        raise IOError(message)

    # Extract values using ESPA metadata library
    espa_metadata = Metadata()
    espa_metadata.parse(xml_filename)
    global_metadata = espa_metadata.xml_object.global_metadata

    # Retrieve scene center time
    scene_center_time = str(global_metadata.scene_center_time)

    # Find sr_band1 and extract the number of lines and samples from it
    found_sr_band1 = 0
    for band in espa_metadata.xml_object.bands.band:
        if band.attrib['name'] == 'sr_band1':
            found_sr_band1 = 1
            number_lines = band.attrib['nlines']
            number_samples = band.attrib['nsamps']
            break

    if not found_sr_band1:
        message = 'Could not find XML data for surface reflectance band 1.'
        raise IOError(message)

    # Retrieve latitude and longitude values
    lon1 = global_metadata.bounding_coordinates.west
    lon2 = global_metadata.bounding_coordinates.east
    lat1 = global_metadata.bounding_coordinates.north
    lat2 = global_metadata.bounding_coordinates.south

    # Verify latitude and longitude values
    if lat1 < -90.0 or lat1 > 90.0:
        message = 'North latitude {0} should be from -90.0 to 90.0. '.format(
            lat1)
        raise ValueError(message)
    if lat2 < -90.0 or lat2 > 90.0:
        message = 'South latitude {0} should be from -90.0 to 90.0. '.format(
            lat2)
        raise ValueError(message)
    if lon1 < -180.0 or lon1 > 180.0:
        message = 'West longitude {0} should be from -180.0 to 180.0. '.format(
            lon1)
        raise ValueError(message)
    if lon2 < -180.0 or lon2 > 180.0:
        message = 'East longitude {0} should be from -180.0 to 180.0. '.format(
            lon2)
        raise ValueError(message)

    return scene_center_time, number_lines, number_samples, lon1, lon2, lat1, \
        lat2
示例#14
0
def convert_bands(xml_filename, no_data_value):
    """Convert multiple intermediate bands

    Args:
        xml_filename <str>: Filename for the ESPA Metadata XML
        no_data_value <float>: No data (fill) value to use
    """

    # XML metadata
    espa_metadata = Metadata(xml_filename)
    espa_metadata.parse()

    # Convert emissivity band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(EMIS_SCALE_FACTOR),
                 mult_factor=EMIS_MULT_FACTOR,
                 range_min=str(EMIS_RANGE_MIN),
                 range_max=str(EMIS_RANGE_MAX),
                 source_product=EMIS_SOURCE_PRODUCT,
                 band_name=EMIS_BAND_NAME)

    # Convert emissivity standard deviation band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(EMIS_STDEV_SCALE_FACTOR),
                 mult_factor=EMIS_STDEV_MULT_FACTOR,
                 range_min=str(EMIS_STDEV_RANGE_MIN),
                 range_max=str(EMIS_STDEV_RANGE_MAX),
                 source_product=EMIS_STDEV_SOURCE_PRODUCT,
                 band_name=EMIS_STDEV_BAND_NAME)

    # Convert cloud distance band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(CLOUD_DISTANCE_SCALE_FACTOR),
                 mult_factor=CLOUD_DISTANCE_MULT_FACTOR,
                 range_min=str(CLOUD_DISTANCE_RANGE_MIN),
                 range_max=str(CLOUD_DISTANCE_RANGE_MAX),
                 source_product=CLOUD_DISTANCE_SOURCE_PRODUCT,
                 band_name=CLOUD_DISTANCE_BAND_NAME)

    # Convert thermal radiance band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(THERMAL_RADIANCE_SCALE_FACTOR),
                 mult_factor=THERMAL_RADIANCE_MULT_FACTOR,
                 range_min=str(THERMAL_RADIANCE_RANGE_MIN),
                 range_max=str(THERMAL_RADIANCE_RANGE_MAX),
                 source_product=THERMAL_RADIANCE_SOURCE_PRODUCT,
                 band_name=THERMAL_RADIANCE_BAND_NAME)

    # Convert upwelled radiance band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(UPWELLED_RADIANCE_SCALE_FACTOR),
                 mult_factor=UPWELLED_RADIANCE_MULT_FACTOR,
                 range_min=str(UPWELLED_RADIANCE_RANGE_MIN),
                 range_max=str(UPWELLED_RADIANCE_RANGE_MAX),
                 source_product=UPWELLED_RADIANCE_SOURCE_PRODUCT,
                 band_name=UPWELLED_RADIANCE_BAND_NAME)

    # Convert downwelled radiance band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(DOWNWELLED_RADIANCE_SCALE_FACTOR),
                 mult_factor=DOWNWELLED_RADIANCE_MULT_FACTOR,
                 range_min=str(DOWNWELLED_RADIANCE_RANGE_MIN),
                 range_max=str(DOWNWELLED_RADIANCE_RANGE_MAX),
                 source_product=DOWNWELLED_RADIANCE_SOURCE_PRODUCT,
                 band_name=DOWNWELLED_RADIANCE_BAND_NAME)

    # Convert atmospheric transmittance band.
    convert_band(espa_metadata=espa_metadata,
                 xml_filename=xml_filename,
                 no_data_value=no_data_value,
                 scale_factor=str(ATMOSPHERIC_TRANSMITTANCE_SCALE_FACTOR),
                 mult_factor=ATMOSPHERIC_TRANSMITTANCE_MULT_FACTOR,
                 range_min=str(ATMOSPHERIC_TRANSMITTANCE_RANGE_MIN),
                 range_max=str(ATMOSPHERIC_TRANSMITTANCE_RANGE_MAX),
                 source_product=ATMOSPHERIC_TRANSMITTANCE_SOURCE_PRODUCT,
                 band_name=ATMOSPHERIC_TRANSMITTANCE_BAND_NAME)
示例#15
0
def buildMetadata(metadata_filename, bit_counts, clip_extents, tile_id,
                  metadata_locs, production_timestamp, tiled_filenames,
                  segment, region, lng_count):
    """Build tile metadata starting from the source L2 metadata files."""
    logger.debug('Buildmetadata: Entered')

    SceneTagsToBeKept = ('data_provider', 'satellite', 'instrument',
                         'acquisition_date', 'scene_center_time',
                         'level1_production_date', 'wrs', 'product_id',
                         'lpgs_metadata_file')

    L1Tuple = []
    L2Tuple = []
    for i, metafilenames in enumerate(metadata_locs):
        if i < lng_count:
            l2tree = ET.parse(metafilenames['L2XML'])
            l2tree = l2tree.getroot()
            L2Tuple.append(l2tree)
            L1Tuple.append(landsat.read_metadatas(metafilenames['L1MTL']))

    # read any namespace from the 1st L2 scene
    namespace = ''
    if ('{' in l2tree.tag):
        endPos = (l2tree.tag).find('}')
        namespace = l2tree.tag[:endPos+1]

    # Start the output xml
    outRoot = ET.Element('ard_metadata')
    outTileMetadata = ET.SubElement(outRoot, 'tile_metadata')
    outTileGlobal = ET.SubElement(outTileMetadata, 'global_metadata')

    # data_provider - use L2 scene
    for child in l2tree.find(namespace + 'global_metadata'):
        if (child.tag == namespace + 'data_provider'):
            outDataProvider = ET.SubElement(outTileGlobal, 'data_provider',
                                            child.attrib)
            outDataProvider.text = child.text

    # satellite - new
    gm_satellite = ET.SubElement(outTileGlobal, 'satellite')
    satellite_strs = {
        'LT04': 'LANDSAT_4',
        'LT05': 'LANDSAT_5',
        'LE07': 'LANDSAT_7',
        'LC08': 'LANDSAT_8',
    }
    gm_satellite.text = satellite_strs[tile_id[:4]]

    # instrument - new
    gm_instrument = ET.SubElement(outTileGlobal, 'instrument')
    instrument_strs = {
        'LT04': 'TM',
        'LT05': 'TM',
        'LE07': 'ETM',
        'LC08': 'OLI/TIRS_Combined',
    }
    gm_instrument.text = instrument_strs[tile_id[:4]]

    # Level 1 Collection - new
    gm_l1coll = ET.SubElement(outTileGlobal, 'level1_collection')
    gm_l1coll.text = tile_id[34:36]

    # ARD Version - new
    gm_ardVersion = ET.SubElement(outTileGlobal, 'ard_version')
    gm_ardVersion.text = tile_id[38:40]

    # Region - new
    gm_region = ET.SubElement(outTileGlobal, 'region')
    gm_region.text = tile_id[5:7]

    # acquisition date - use L2 scene
    for child in l2tree.find(namespace + 'global_metadata'):
        if (child.tag == namespace + 'acquisition_date'):
            outAcqDate = ET.SubElement(outTileGlobal, 'acquisition_date',
                                       child.attrib)
            outAcqDate.text = child.text

    # tile_id - new
    gm_productid = ET.SubElement(outTileGlobal, 'product_id')
    gm_productid.text = tile_id

    # tile_production_date - new
    gm_tilepd = ET.SubElement(outTileGlobal, 'production_date')
    gm_tilepd.text = production_timestamp

    # bounding coordinates - modify L2 scene
    logger.debug('Buildmetadata: Ready for bounding_coordinates')
    horiz = tile_id[8:11]
    vertical = tile_id[11:14]
    newBoundingCoordsStr = getGeographicBoundingCoordinates(horiz,
                                                            vertical, region)
    tempBoundingElement = ET.fromstring(newBoundingCoordsStr)

    gm_bounding = ET.SubElement(outTileGlobal, tempBoundingElement.tag,
                                tempBoundingElement.attrib)

    for child in tempBoundingElement:
        gm_bounding_child = ET.SubElement(gm_bounding, child.tag, child.attrib)
        gm_bounding_child.text = child.text

    # projection information - modify L2 scene
    logger.debug('Buildmetadata: Ready for projection information')
    newProjInfo = global_createProjInfo(clip_extents, region)
    tempProjElement = ET.fromstring(newProjInfo)

    gm_ProjInfo = ET.SubElement(outTileGlobal, tempProjElement.tag,
                                tempProjElement.attrib)

    for child in tempProjElement:
        gm_proj_child = ET.SubElement(gm_ProjInfo, child.tag, child.attrib)
        gm_proj_child.text = child.text
        if (child.tag == "albers_proj_params"):
            for projChild in child:
                gm_proj_grandchild = ET.SubElement(gm_proj_child,
                                                   projChild.tag,
                                                   projChild.attrib)
                gm_proj_grandchild.text = projChild.text

    # orientation_angle - use L2 scene
    for child in l2tree.find(namespace + 'global_metadata'):
        if (child.tag == namespace + 'orientation_angle'):
            outOrientation = ET.SubElement(outTileGlobal, 'orientation_angle',
                                           child.attrib)
            outOrientation.text = child.text

    # tile_grid - new
    gm_tileid = ET.SubElement(outTileGlobal, 'tile_grid')
    gm_tileid.set('v', tile_id[11:14])
    gm_tileid.set('h', tile_id[8:11])

    # scene_count - new
    gm_sc = ET.SubElement(outTileGlobal, 'scene_count')
    gm_sc.text = str(lng_count)

    qa_percents = createPixelTypeTuple(bit_counts)

    # cloud_cover - new
    gm_cc = ET.SubElement(outTileGlobal, 'cloud_cover')
    gm_cc.text = qa_percents['cloud_cover']

    # cloud_shadow - new
    gm_cs = ET.SubElement(outTileGlobal, 'cloud_shadow')
    gm_cs.text = qa_percents['cloud_shadow']

    # snow_ice - new
    gm_si = ET.SubElement(outTileGlobal, 'snow_ice')
    gm_si.text = qa_percents['snow_ice']

    # fill - new
    gm_fill = ET.SubElement(outTileGlobal, 'fill')
    gm_fill.text = qa_percents['fill']

    #
    # Build all of the bands for the tile
    #
    # This group of tags originate from
    # a Level 2 metadata file.  This section will
    # describe the tile bands - most of the
    # information is already correct, but
    # anything tile related will have to be changed.
    #
    outTileBands = ET.SubElement(outTileMetadata, 'bands')

    # add lineage band
    lineageStr = createLineageSection(tile_id, production_timestamp)
    tempLineageElement = ET.fromstring(lineageStr)

    bands_lineage = ET.SubElement(outTileBands, tempLineageElement.tag,
                                  tempLineageElement.attrib)

    for child in tempLineageElement:
        bands_lineage_child = ET.SubElement(bands_lineage, child.tag,
                                            child.attrib)
        bands_lineage_child.text = child.text

    # Loop through all of the bands in the L2 file.
    # Each band will need to be modified to reflect the
    # characteristics of the tile.
    bandsElement = l2tree.find(namespace + 'bands')

    included_newnames = list()
    for curBand in bandsElement:
        oldBandStr = ET.tostring(curBand)
        newNameOnly, newBandStr = fixTileBand2(tile_id, tiled_filenames,
                                               production_timestamp,
                                               oldBandStr)

        if newBandStr is None:
            logger.debug('Skipping band not in current XML group')
            continue
        included_newnames.append(newNameOnly)

        tempBandElement = ET.fromstring(newBandStr)

        bands_band = ET.SubElement(outTileBands, tempBandElement.tag,
                                   tempBandElement.attrib)

        for child in tempBandElement:
            bands_band_child = ET.SubElement(bands_band, child.tag,
                                             child.attrib)
            bands_band_child.text = child.text
            if (child.tag in ["bitmap_description", "class_values"]):
                for bandChild in child:
                    bands_band_grandchild = ET.SubElement(bands_band_child,
                                                          bandChild.tag,
                                                          bandChild.attrib)
                    bands_band_grandchild.text = bandChild.text

    logger.debug('Buildmetadata: finished tile bands')

    #
    # "Global" and "bands" have now been created for the new tiles.
    #
    #  Next modify the scene metadata for each contributing scene.
    #  We'll have to read some values from the Level 1 (MTL.txt) file.
    #
    for i in range(lng_count):
        sceneRoot = (L2Tuple[i])

        #  Read some values from the Level 1 (MTL.txt) file.
        request_id = getL1Value(L1Tuple[i], "REQUEST_ID")
        scene_id = getL1Value(L1Tuple[i], "LANDSAT_SCENE_ID")
        elev_src = getL1Value(L1Tuple[i], "ELEVATION_SOURCE")

        if any(tile_id.startswith(x) for x in ('LT04', 'LT05', 'LE07')):
            sensor_mode = getL1Value(L1Tuple[i], "SENSOR_MODE")
            ephemeris_type = getL1Value(L1Tuple[i], "EPHEMERIS_TYPE")

        cpf_name = getL1Value(L1Tuple[i], "CPF_NAME")
        geometric_rmse_model = getL1Value(L1Tuple[i],
                                          "GEOMETRIC_RMSE_MODEL")
        geometric_rmse_model_x = getL1Value(L1Tuple[i],
                                            "GEOMETRIC_RMSE_MODEL_X")
        geometric_rmse_model_y = getL1Value(L1Tuple[i],
                                            "GEOMETRIC_RMSE_MODEL_Y")

        # opening tags for each scene
        outSceneMetadata = ET.SubElement(outRoot, 'scene_metadata')
        outSceneIndex = ET.SubElement(outSceneMetadata, 'index')
        outSceneIndex.text = str(i+1)
        outSceneGlobal = ET.SubElement(outSceneMetadata, 'global_metadata')

        # Regurgitate the L2 scene information,
        # interspursing some additional L1 info
        # along the way
        for child in sceneRoot.find(namespace + 'global_metadata'):
            newTag = (child.tag).replace('ns0:', '')
            newTag = (child.tag).replace(namespace, '')

            if (newTag in SceneTagsToBeKept):
                outGeneric = ET.SubElement(outSceneGlobal, newTag,
                                           child.attrib)
                outGeneric.text = child.text

            if (newTag == 'wrs'):
                outGeneric = ET.SubElement(outSceneGlobal, 'request_id')
                outGeneric.text = request_id
                outGeneric = ET.SubElement(outSceneGlobal, 'scene_id')
                outGeneric.text = scene_id

            if (newTag == 'product_id'):
                outGeneric = ET.SubElement(outSceneGlobal, 'elevation_source')
                outGeneric.text = elev_src

                is_landsat_4_7 = any(tile_id.startswith(x)
                                     for x in ('LT04', 'LT05', 'LE07'))
                if is_landsat_4_7:
                    outGeneric = ET.SubElement(outSceneGlobal, 'sensor_mode')
                    outGeneric.text = sensor_mode
                    outGeneric = ET.SubElement(outSceneGlobal,
                                               'ephemeris_type')
                    outGeneric.text = ephemeris_type

                outGeneric = ET.SubElement(outSceneGlobal, 'cpf_name')
                outGeneric.text = cpf_name

            if (newTag == 'lpgs_metadata_file'):

                if geometric_rmse_model.find("not found") == -1:
                    outGeneric = ET.SubElement(outSceneGlobal,
                                               'geometric_rmse_model')
                    outGeneric.text = geometric_rmse_model

                if geometric_rmse_model_x.find("not found") == -1:
                    outGeneric = ET.SubElement(outSceneGlobal,
                                               'geometric_rmse_model_x')
                    outGeneric.text = geometric_rmse_model_x

                if geometric_rmse_model_y.find("not found") == -1:
                    outGeneric = ET.SubElement(outSceneGlobal,
                                               'geometric_rmse_model_y')
                    outGeneric.text = geometric_rmse_model_y

        outSceneBands = ET.SubElement(outSceneMetadata, 'bands')

        # The scene bands
        for bandTag in sceneRoot.find(namespace + 'bands'):
            if bandTag.attrib.get('name') not in included_newnames:
                logger.debug('Skipping band not in current XML group')
                continue
            newTag = (bandTag.tag).replace(namespace, '')
            bandElement = ET.SubElement(outSceneBands, newTag, bandTag.attrib)
            bandElement.text = bandTag.text

            for child in bandTag:
                newTag2 = (child.tag).replace(namespace, '')
                childElement = ET.SubElement(bandElement, newTag2,
                                             child.attrib)
                childElement.text = child.text
                if (newTag2 in ["bitmap_description", "class_values"]):
                    for bitmapChild in child:
                        bitmapTag = (bitmapChild.tag).replace(namespace, '')
                        bands_band_bitmap = ET.SubElement(childElement,
                                                          bitmapTag,
                                                          bitmapChild.attrib)
                        bands_band_bitmap.text = bitmapChild.text

    logger.debug('Buildmetadata: Ready to write')

    namespace1Prefix = "xmlns"
    namespace2Prefix = "xmlns:xsi"
    namespace3Prefix = "xsi:schemaLocation"

    # TODO: these should come from the XSD
    namespace1URI = "https://landsat.usgs.gov/ard/v1"
    namespace2URI = "http://www.w3.org/2001/XMLSchema-instance"
    namespace3URI = ("https://landsat.usgs.gov/ard/v1 "
                     "https://landsat.usgs.gov/ard/ard_metadata_v1_1.xsd")

    outRoot.attrib[namespace3Prefix] = namespace3URI
    outRoot.attrib[namespace2Prefix] = namespace2URI
    outRoot.attrib[namespace1Prefix] = namespace1URI
    outRoot.attrib["version"] = "1.1"

    # Add string indentation - Unfortunately,
    # this function produces extra carriage returns
    # after some elements...

    prettyString = (
        minidom.parseString(ET.tostring(outRoot)
                            ).toprettyxml(encoding="utf-8", indent="    ")
    )

    # Write to temp file
    uglyFullName = metadata_filename.replace(".xml", "_ugly.xml")
    with open(uglyFullName, "w") as f:
        f.write(prettyString.encode('utf-8'))

    # Looks like the minidom pretty print added some
    # blank lines followed by CRLF.  The blank lines are
    # of more than one length in our case.  Remove any
    # blank lines.
    inMetafile = open(uglyFullName, "r")
    outMetafile = open(metadata_filename, "w")

    for curLine in inMetafile:

        allSpaces = True
        for curChar in curLine:
            if ((curChar != '\x20')
                    and (curChar != '\x0D')
                    and (curChar != '\x0A')):
                allSpaces = False
                continue

        if allSpaces is False:
            outMetafile.write(curLine)
        # else:
        #    print 'Found blank line'

    inMetafile.close()
    outMetafile.close()

    # Validate metafile that was just created
    tile_metadata = Metadata(xml_filename=metadata_filename)
    tile_metadata.validate()
    def setUp(self):

        xml_filename = 'unittests/test.xml'
        self.mm = Metadata(xml_filename=xml_filename)
        self.mm.parse()
    def setUp(self):

        xml_filename = 'unittests/test.xml'
        self.mm = Metadata(xml_filename=xml_filename)
        self.mm.parse()