def test_get_data_for_a_minimal_example(): """Given a dataset and the congfiguration pertaining to that dataset, we should find the values.""" SAMPLE_DATASET = { "components": ["CU", "MG", "VA"], "phases": ["LAVES_C15"], "solver": { "mode": "manual", "sublattice_site_ratios": [2, 1], "sublattice_configurations": [["CU", "MG"], ["MG", "CU"], ["MG", "MG"], ["CU", "CU"]] }, "conditions": { "P": 101325, "T": 298.15 }, "output": "HM_FORM", "values": [[[-15720, 34720, 7000, 15500]]] } datasets = PickleableTinyDB(storage=MemoryStorage) datasets.insert(SAMPLE_DATASET) comps = ['CU', 'MG', 'VA'] phase_name = 'LAVES_C15' configuration = ('MG', 'CU') symmetry = None desired_props = ['HM_FORM'] desired_data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) assert len(desired_data) == 1 desired_data = desired_data[0] assert desired_data['components'] == comps assert desired_data['phases'][0] == phase_name assert desired_data['solver']['sublattice_site_ratios'] == [2, 1] assert desired_data['solver']['sublattice_configurations'] == (('MG', 'CU'), ) assert desired_data['conditions']['P'] == 101325 assert desired_data['conditions']['T'] == 298.15 assert desired_data['output'] == 'HM_FORM' assert desired_data['values'] == np.array([[[34720.0]]])
def plot_parameters(dbf, comps, phase_name, configuration, symmetry, datasets=None, fig=None, require_data=True): """ Plot parameters of interest compared with data in subplots of a single figure Parameters ---------- dbf : Database pycalphad thermodynamic database containing the relevant parameters. comps : list Names of components to consider in the calculation. phase_name : str Name of the considered phase phase configuration : tuple Sublattice configuration to plot, such as ('CU', 'CU') or (('CU', 'MG'), 'CU') symmetry : list List of lists containing indices of symmetric sublattices e.g. [[0, 1], [2, 3]] datasets : PickleableTinyDB ESPEI datasets to compare against. If None, nothing is plotted. fig : matplotlib.Figure Figure to create with axes as subplots. require_data : bool If True, plot parameters that have data corresponding data. Defaults to True. Will raise an error for non-interaction configurations. Returns ------- None Examples -------- # plot the LAVES_C15 (Cu)(Mg) endmember >>> plot_parameters(dbf, ['CU', 'MG'], 'LAVES_C15', ('CU', 'MG'), symmetry=None, datasets=datasets) # plot the mixing interaction in the first sublattice >>> plot_parameters(dbf, ['CU', 'MG'], 'LAVES_C15', (('CU', 'MG'), 'MG'), symmetry=None, datasets=datasets) """ em_plots = [('T', 'CPM'), ('T', 'CPM_FORM'), ('T', 'SM'), ('T', 'SM_FORM'), ('T', 'HM'), ('T', 'HM_FORM')] mix_plots = [('Z', 'HM_FORM'), ('Z', 'HM_MIX'), ('Z', 'SM_MIX')] comps = sorted(comps) mod = Model(dbf, comps, phase_name) # This is for computing properties of formation mod_norefstate = Model( dbf, comps, phase_name, parameters={'GHSER' + (c.upper() * 2)[:2]: 0 for c in comps}) # Is this an interaction parameter or endmember? if any([ isinstance(conf, list) or isinstance(conf, tuple) for conf in configuration ]): plots = mix_plots else: plots = em_plots # filter which parameters to plot by the data that exists if require_data and datasets is not None: filtered_plots = [] for x_val, y_val in plots: desired_props = [y_val.split('_')[0] + '_FORM', y_val ] if y_val.endswith('_MIX') else [y_val] data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) if len(data) > 0: filtered_plots.append((x_val, y_val, data)) elif require_data: raise ValueError( 'Plots require datasets, but no datasets were passed.') elif plots == em_plots and not require_data: # How we treat temperature dependence is ambiguous when there is no data, so we raise an error raise ValueError( 'The "require_data=False" option is not supported for non-mixing configurations.' ) elif datasets is not None: filtered_plots = [] for x_val, y_val in plots: desired_props = [y_val.split('_')[0] + '_FORM', y_val ] if y_val.endswith('_MIX') else [y_val] data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) filtered_plots.append((x_val, y_val, data)) else: filtered_plots = [(x_val, y_val, []) for x_val, y_val in plots] num_plots = len(filtered_plots) if num_plots == 0: return if not fig: fig = plt.figure(figsize=plt.figaspect(num_plots)) # plot them for i, (x_val, y_val, data) in enumerate(filtered_plots): if y_val.endswith('_FORM'): ax = fig.add_subplot(num_plots, 1, i + 1) ax = _compare_data_to_parameters(dbf, comps, phase_name, data, mod_norefstate, configuration, x_val, y_val, ax=ax) else: ax = fig.add_subplot(num_plots, 1, i + 1) ax = _compare_data_to_parameters(dbf, comps, phase_name, data, mod, configuration, x_val, y_val, ax=ax)
def plot_property(dbf, comps, phaseL, params, T, prop, config=None, datasets=None, xlim=None, xlabel=None, ylabel=None, yscale=None, phase_label_dict=None, unit='kJ/mol.', cdict=None, figsize=None): """ Plot a property of interest versus temperature with uncertainty bounds for all phases of interest Parameters ---------- dbf : Database Thermodynamic database containing the relevant parameters comps : list Names of components to consider in the calculation phaseL : list Names of phases to plot properties for params : numpy array Array where the rows contain the parameter sets for the pycalphad equilibrium calculation T : list, array or x-array object Temperature values at which to plot the selected property prop : str property (or attribute in pycalphad terminology) to sample, e.g. GM for molar gibbs energy or H_MIX for the enthalpy of mixing config : tuple, optional Sublattice configuration as a tuple, e.g. (“CU”, (“CU”, “MG”)) datasets : espei.utils.PickleableTinyDB, optional Database of datasets to search for data xlims : list or tuple of float, optional List or tuple with two floats corresponding to the minimum and maximum molar composition of comp xlabel : str, optional plot x label ylabel : str, optional plot y label yscale : int or float, optional scaling factor to apply to property (e.g. to plot kJ/mol. instead of J/mol. choose yscale to be 0.001) phase_label_dict : dict, optional Dictionary with keys given by phase names and corresponding strings to use in plotting (e.g. to enable LaTeX labels) unit : str, optional Unit to plot on the y-axis for the property of interest cdict : dict, optional Dictionary with phase names and corresponding colors figsize : tuple or list of int or float, optional Plot dimensions in inches Returns ------- Examples -------- >>> import numpy as np >>> import pduq.uq_plot as uq >>> from pycalphad import Database >>> dbf = Database('CU-MG_param_gen.tdb') >>> comps = ['MG', 'CU', 'VA'] >>> phaseL = ['CUMG2', 'LIQUID'] >>> params = np.loadtxt('params.npy')[: -1, :] >>> T = 650 >>> prop = 'GM' >>> # Plot the molar gibbs energy of all phases in phaseL >>> # versus molar fraction of MG at 650K. This will have >>> # uncertainty intervals generated by the parameter sets >>> # in params >>> uq.plot_property(dbf, comps, phaseL, params, T, prop) """ symbols_to_fit = database_symbols_to_fit(dbf) CI = 95 nph = len(phaseL) colorL = sns.color_palette("cubehelix", nph) markerL = 10 * [ 'o', 'D', '^', 'x', 'h', 's', 'v', '*', 'P', 'p', '>', 'd', '<' ] plt.figure(figsize=figsize) # compute uncertainty in property for each phase in list for ii in range(nph): phase = phaseL[ii] print('starting', prop, 'evaluations for the', phase, 'phase') # for each parameter sample calculate the property # for each possible site occupancy ratios compL = [] for index in range(params.shape[0]): param_dict = { param_name: param for param_name, param in zip(symbols_to_fit, params[index, :]) } parameters = OrderedDict(sorted(param_dict.items(), key=str)) comp = calculate(dbf, comps, phase, P=101325, T=T, output=prop, parameters=parameters) compL += [comp] # concatenate the calculate results in an xarray along # an axis named 'sample' compC = xr.concat(compL, 'sample') compC.coords['sample'] = np.arange(params.shape[0]) # The composition vector is the same for all samples if hasattr(T, "__len__"): Xvals = T else: Xvals = comp.X.sel(component=comps[0]).values.squeeze() Pvals = compC[prop].where(compC.Phase == phase).values.squeeze() if np.array(Xvals).size == 1: print('phase is a line compound') Xvals_ = np.array([Xvals - 0.002, Xvals + 0.002]) Pvals_ = np.vstack([Pvals, Pvals]).T else: # find the lower hull of the property by finding # the configuration with the lowest value within # each interval. In each interval record the composition # and property indxL = np.array([]) # Xbnds = np.arange(0, 1.01, 0.01) Xbnds = np.linspace(Xvals.min(), Xvals.max(), 100) for lb, ub in zip(Xbnds[:-1], Xbnds[1:]): # print('lb: ', lb, ', ub: ', ub) boolA = (lb <= Xvals) * (Xvals < ub) if boolA.sum() == 0: continue indxA = np.arange(boolA.size)[boolA] P_ = Pvals[0, boolA] indxL = np.append(indxL, indxA[P_.argmin()]) # indxL = np.append(indxL, indxA[P_.argmax()]) indxL = indxL.astype('int32') if indxL.size == 1: print('only one point found') Xvals_ = Xvals[np.asscalar(indxL)] Pvals_ = Pvals[:, np.asscalar(indxL)] else: Xvals_ = Xvals[indxL] Pvals_ = Pvals[:, indxL] # Xvals_ = Xvals # Pvals_ = Pvals # for ii in range(params.shape[0]): # plt.plot(Xvals_, Pvals_[ii, :], 'k-', linewidth=0.5, alpha=0.1) # plt.show() if yscale is not None: Pvals_ *= yscale low, mid, high = np.percentile( Pvals_, [0.5 * (100 - CI), 50, 100 - 0.5 * (100 - CI)], axis=0) if cdict is not None: color = cdict[phase] else: color = colorL[ii] if phase_label_dict is not None: label = phase_label_dict[phase] else: label = phase plt.plot(Xvals_, mid, linestyle='-', color=color, label=label) plt.fill_between(np.atleast_1d(Xvals_), low, high, alpha=0.3, facecolor=color) # collect and plot experimental data if config is not None and datasets is not None: symmetry = None data = get_data(comps, phase, config, symmetry, datasets, prop) print(data) for data_s, marker in zip(data, markerL): occupancies = data_s['solver']['sublattice_occupancies'] # at the moment this needs to be changed manually X_vec = [row[0][0] for row in occupancies] values = np.squeeze(data_s['values']) if yscale is not None: values *= yscale plt.plot(X_vec, values, linestyle='', marker=marker, markerfacecolor='none', markeredgecolor=color, markersize=6, alpha=0.9, label=data_s['reference']) if xlim is None: plt.xlim([Xvals_.min(), Xvals_.max()]) else: plt.xlim(xlim) if xlabel is not None: plt.xlabel(xlabel) else: plt.xlabel(r'$X_{%s}$' % comps[0]) if ylabel is not None: plt.ylabel(ylabel) else: plt.ylabel(prop + ' (' + unit + ')') plt.legend() plt.tight_layout()
def fit_formation_energy(dbf, comps, phase_name, configuration, symmetry, datasets, features=None): """ Find suitable linear model parameters for the given phase. We do this by successively fitting heat capacities, entropies and enthalpies of formation, and selecting against criteria to prevent overfitting. The "best" set of parameters minimizes the error without overfitting. Parameters ---------- dbf : Database pycalphad Database. Partially complete, so we know what degrees of freedom to fix. comps : [str] Names of the relevant components. phase_name : str Name of the desired phase for which the parameters will be found. configuration : ndarray Configuration of the sublattices for the fitting procedure. symmetry : [[int]] Symmetry of the sublattice configuration. datasets : PickleableTinyDB All the datasets desired to fit to. features : dict Maps "property" to a list of features for the linear model. These will be transformed from "GM" coefficients e.g., {"CPM_FORM": (v.T*sympy.log(v.T), v.T**2, v.T**-1, v.T**3)} (Default value = None) Returns ------- dict {feature: estimated_value} """ if features is None: features = [("CPM_FORM", (v.T * sympy.log(v.T), v.T**2, v.T**-1, v.T**3)), ("SM_FORM", (v.T, )), ("HM_FORM", (sympy.S.One, ))] features = OrderedDict(features) if any([isinstance(conf, (list, tuple)) for conf in configuration]): # TODO: assumes binary interaction here fitting_steps = (["CPM_FORM", "CPM_MIX"], ["SM_FORM", "SM_MIX"], ["HM_FORM", "HM_MIX"]) # Product of all nonzero site fractions in all sublattices YS = sympy.Symbol('YS') # Product of all binary interaction terms Z = sympy.Symbol('Z') redlich_kister_features = (YS, YS * Z, YS * (Z**2), YS * (Z**3)) for feature in features.keys(): all_features = list( itertools.product(redlich_kister_features, features[feature])) features[feature] = [i[0] * i[1] for i in all_features] logging.debug('ENDMEMBERS FROM INTERACTION: {}'.format( endmembers_from_interaction(configuration))) else: # We are only fitting an endmember; no mixing data needed fitting_steps = (["CPM_FORM"], ["SM_FORM"], ["HM_FORM"]) parameters = {} for feature in features.values(): for coef in feature: parameters[coef] = 0 # These is our previously fit partial model # Subtract out all of these contributions (zero out reference state because these are formation properties) fixed_model = Model( dbf, comps, phase_name, parameters={'GHSER' + (c.upper() * 2)[:2]: 0 for c in comps}) fixed_model.models['idmix'] = 0 fixed_portions = [0] moles_per_formula_unit = sympy.S(0) subl_idx = 0 for num_sites, const in zip(dbf.phases[phase_name].sublattices, dbf.phases[phase_name].constituents): if Species('VA') in const: moles_per_formula_unit += num_sites * ( 1 - v.SiteFraction(phase_name, subl_idx, Species('VA'))) else: moles_per_formula_unit += num_sites subl_idx += 1 for desired_props in fitting_steps: desired_data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) logging.debug('{}: datasets found: {}'.format(desired_props, len(desired_data))) if len(desired_data) > 0: # We assume all properties in the same fitting step have the same features (but different ref states) feature_matrix = _build_feature_matrix(desired_props[0], features[desired_props[0]], desired_data) all_samples = get_samples(desired_data) data_quantities = np.concatenate(_shift_reference_state( desired_data, feature_transforms[desired_props[0]], fixed_model), axis=-1) site_fractions = [ build_sitefractions( phase_name, ds['solver']['sublattice_configurations'], ds['solver'].get( 'sublattice_occupancies', np.ones(( len(ds['solver']['sublattice_configurations']), len(ds['solver']['sublattice_configurations'][0])), dtype=np.float))) for ds in desired_data for _ in ds['conditions']['T'] ] # Flatten list site_fractions = list(itertools.chain(*site_fractions)) # Remove existing partial model contributions from the data data_quantities = data_quantities - feature_transforms[ desired_props[0]](fixed_model.ast) # Subtract out high-order (in T) parameters we've already fit data_quantities = data_quantities - \ feature_transforms[desired_props[0]](sum(fixed_portions)) / moles_per_formula_unit for sf, i in zip(site_fractions, data_quantities): missing_variables = sympy.S(i * moles_per_formula_unit).atoms( v.SiteFraction) - set(sf.keys()) sf.update({x: 0. for x in missing_variables}) # moles_per_formula_unit factor is here because our data is stored per-atom # but all of our fits are per-formula-unit data_quantities = [ sympy.S(i * moles_per_formula_unit).xreplace(sf).xreplace({ v.T: ixx[0] }).evalf() for i, sf, ixx in zip(data_quantities, site_fractions, all_samples) ] data_quantities = np.asarray(data_quantities, dtype=np.float) parameters.update( _fit_parameters(feature_matrix, data_quantities, features[desired_props[0]])) # Add these parameters to be fixed for the next fitting step fixed_portion = np.array(features[desired_props[0]], dtype=np.object) fixed_portion = np.dot(fixed_portion, [ parameters[feature] for feature in features[desired_props[0]] ]) fixed_portions.append(fixed_portion) return parameters
def fit_formation_energy(dbf, comps, phase_name, configuration, symmetry, datasets, ridge_alpha=None, aicc_phase_penalty=None, features=None): """ Find suitable linear model parameters for the given phase. We do this by successively fitting heat capacities, entropies and enthalpies of formation, and selecting against criteria to prevent overfitting. The "best" set of parameters minimizes the error without overfitting. Parameters ---------- dbf : Database pycalphad Database. Partially complete, so we know what degrees of freedom to fix. comps : [str] Names of the relevant components. phase_name : str Name of the desired phase for which the parameters will be found. configuration : ndarray Configuration of the sublattices for the fitting procedure. symmetry : [[int]] Symmetry of the sublattice configuration. datasets : PickleableTinyDB All the datasets desired to fit to. ridge_alpha : float Value of the $alpha$ hyperparameter used in ridge regression. Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression. For now, the parameter is applied to all features. aicc_feature_factors : dict Map of phase name to feature to a multiplication factor for the AICc's parameter penalty. features : dict Maps "property" to a list of features for the linear model. These will be transformed from "GM" coefficients e.g., {"CPM_FORM": (v.T*sympy.log(v.T), v.T**2, v.T**-1, v.T**3)} (Default value = None) Returns ------- dict {feature: estimated_value} """ aicc_feature_factors = aicc_phase_penalty if aicc_phase_penalty is not None else {} if interaction_test(configuration): logging.debug('ENDMEMBERS FROM INTERACTION: {}'.format( endmembers_from_interaction(configuration))) fitting_steps = (["CPM_FORM", "CPM_MIX"], ["SM_FORM", "SM_MIX"], ["HM_FORM", "HM_MIX"]) else: # We are only fitting an endmember; no mixing data needed fitting_steps = (["CPM_FORM"], ["SM_FORM"], ["HM_FORM"]) # create the candidate models and fitting steps if features is None: features = OrderedDict([ ("CPM_FORM", (v.T * sympy.log(v.T), v.T**2, v.T**-1, v.T**3)), ("SM_FORM", (v.T, )), ("HM_FORM", (sympy.S.One, )), ]) # dict of {feature, [candidate_models]} candidate_models_features = build_candidate_models(configuration, features) # All possible parameter values that could be taken on. This is some legacy # code from before there were many candidate models built. For very large # sets of candidate models, this could be quite slow. # TODO: we might be able to remove this initialization for clarity, depends on fixed poritions parameters = {} for candidate_models in candidate_models_features.values(): for model in candidate_models: for coef in model: parameters[coef] = 0 # These is our previously fit partial model from previous steps # Subtract out all of these contributions (zero out reference state because these are formation properties) fixed_model = Model( dbf, comps, phase_name, parameters={'GHSER' + (c.upper() * 2)[:2]: 0 for c in comps}) fixed_portions = [0] for desired_props in fitting_steps: feature_type = desired_props[0].split('_')[0] # HM_FORM -> HM aicc_factor = aicc_feature_factors.get(feature_type, 1.0) desired_data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) logging.log( TRACE, '{}: datasets found: {}'.format(desired_props, len(desired_data))) if len(desired_data) > 0: # Ravelled weights for all data weights = get_weights(desired_data) # We assume all properties in the same fitting step have the same # features (all CPM, all HM, etc., but different ref states). # data quantities are the same for each candidate model and can be computed up front data_qtys = get_data_quantities(feature_type, fixed_model, fixed_portions, desired_data) # build the candidate model transformation matrix and response vector (A, b in Ax=b) feature_matricies = [] data_quantities = [] for candidate_model in candidate_models_features[desired_props[0]]: if interaction_test(configuration, 3): feature_matricies.append( build_ternary_feature_matrix(desired_props[0], candidate_model, desired_data)) else: feature_matricies.append( _build_feature_matrix(desired_props[0], candidate_model, desired_data)) data_quantities.append(data_qtys) # provide candidate models and get back a selected model. selected_model = select_model(zip( candidate_models_features[desired_props[0]], feature_matricies, data_quantities), ridge_alpha, weights=weights, aicc_factor=aicc_factor) selected_features, selected_values = selected_model parameters.update(zip(*(selected_features, selected_values))) # Add these parameters to be fixed for the next fitting step fixed_portion = np.array(selected_features, dtype=np.object) fixed_portion = np.dot(fixed_portion, selected_values) fixed_portions.append(fixed_portion) return parameters
def fit_formation_energy(dbf, comps, phase_name, configuration, symmetry, datasets, ridge_alpha=1.0e-100, features=None): """ Find suitable linear model parameters for the given phase. We do this by successively fitting heat capacities, entropies and enthalpies of formation, and selecting against criteria to prevent overfitting. The "best" set of parameters minimizes the error without overfitting. Parameters ---------- dbf : Database pycalphad Database. Partially complete, so we know what degrees of freedom to fix. comps : [str] Names of the relevant components. phase_name : str Name of the desired phase for which the parameters will be found. configuration : ndarray Configuration of the sublattices for the fitting procedure. symmetry : [[int]] Symmetry of the sublattice configuration. datasets : PickleableTinyDB All the datasets desired to fit to. ridge_alpha : float Value of the $alpha$ hyperparameter used in ridge regression. Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression. For now, the parameter is applied to all features. features : dict Maps "property" to a list of features for the linear model. These will be transformed from "GM" coefficients e.g., {"CPM_FORM": (v.T*sympy.log(v.T), v.T**2, v.T**-1, v.T**3)} (Default value = None) Returns ------- dict {feature: estimated_value} """ if interaction_test(configuration): logging.debug('ENDMEMBERS FROM INTERACTION: {}'.format( endmembers_from_interaction(configuration))) fitting_steps = (["CPM_FORM", "CPM_MIX"], ["SM_FORM", "SM_MIX"], ["HM_FORM", "HM_MIX"]) else: # We are only fitting an endmember; no mixing data needed fitting_steps = (["CPM_FORM"], ["SM_FORM"], ["HM_FORM"]) # create the candidate models and fitting steps if features is None: features = OrderedDict([("CPM_FORM", (v.T * sympy.log(v.T), v.T**2, v.T**-1, v.T**3)), ("SM_FORM", (v.T, )), ("HM_FORM", (sympy.S.One, ))]) # dict of {feature, [candidate_models]} candidate_models_features = build_candidate_models(configuration, features) # All possible parameter values that could be taken on. This is some legacy # code from before there were many candidate models built. For very large # sets of candidate models, this could be quite slow. # TODO: we might be able to remove this initialization for clarity, depends on fixed poritions parameters = {} for candidate_models in candidate_models_features.values(): for model in candidate_models: for coef in model: parameters[coef] = 0 # These is our previously fit partial model from previous steps # Subtract out all of these contributions (zero out reference state because these are formation properties) fixed_model = Model( dbf, comps, phase_name, parameters={'GHSER' + (c.upper() * 2)[:2]: 0 for c in comps}) fixed_model.models['idmix'] = 0 fixed_portions = [0] moles_per_formula_unit = sympy.S(0) YS = sympy.Symbol('YS') # site fraction symbol that we will reuse Z = sympy.Symbol('Z') # site fraction symbol that we will reuse subl_idx = 0 for num_sites, const in zip(dbf.phases[phase_name].sublattices, dbf.phases[phase_name].constituents): if v.Species('VA') in const: moles_per_formula_unit += num_sites * ( 1 - v.SiteFraction(phase_name, subl_idx, v.Species('VA'))) else: moles_per_formula_unit += num_sites subl_idx += 1 for desired_props in fitting_steps: desired_data = get_data(comps, phase_name, configuration, symmetry, datasets, desired_props) logging.debug('{}: datasets found: {}'.format(desired_props, len(desired_data))) if len(desired_data) > 0: # We assume all properties in the same fitting step have the same features (all CPM, all HM, etc.) (but different ref states) all_samples = get_samples(desired_data) site_fractions = [ build_sitefractions( phase_name, ds['solver']['sublattice_configurations'], ds['solver'].get( 'sublattice_occupancies', np.ones(( len(ds['solver']['sublattice_configurations']), len(ds['solver']['sublattice_configurations'][0])), dtype=np.float))) for ds in desired_data for _ in ds['conditions']['T'] ] # Flatten list site_fractions = list(itertools.chain(*site_fractions)) # build the candidate model transformation matrix and response vector (A, b in Ax=b) feature_matricies = [] data_quantities = [] for candidate_model in candidate_models_features[desired_props[0]]: if interaction_test(configuration, 3): feature_matricies.append( build_ternary_feature_matrix(desired_props[0], candidate_model, desired_data)) else: feature_matricies.append( _build_feature_matrix(desired_props[0], candidate_model, desired_data)) data_qtys = np.concatenate(shift_reference_state( desired_data, feature_transforms[desired_props[0]], fixed_model), axis=-1) # Remove existing partial model contributions from the data data_qtys = data_qtys - feature_transforms[desired_props[0]]( fixed_model.ast) # Subtract out high-order (in T) parameters we've already fit data_qtys = data_qtys - feature_transforms[desired_props[0]]( sum(fixed_portions)) / moles_per_formula_unit # if any site fractions show up in our data_qtys that aren't in this datasets site fractions, set them to zero. for sf, i, (_, (sf_product, inter_product)) in zip(site_fractions, data_qtys, all_samples): missing_variables = sympy.S( i * moles_per_formula_unit).atoms( v.SiteFraction) - set(sf.keys()) sf.update({x: 0. for x in missing_variables}) # The equations we have just have the site fractions as YS # and interaction products as Z, so take the product of all # the site fractions that we see in our data qtys sf.update({YS: sf_product, Z: inter_product}) # moles_per_formula_unit factor is here because our data is stored per-atom # but all of our fits are per-formula-unit data_qtys = [ sympy.S(i * moles_per_formula_unit).xreplace(sf).xreplace({ v.T: ixx[0] }).evalf() for i, sf, ixx in zip(data_qtys, site_fractions, all_samples) ] data_qtys = np.asarray(data_qtys, dtype=np.float) data_quantities.append(data_qtys) # provide candidate models and get back a selected model. selected_model = select_model( zip(candidate_models_features[desired_props[0]], feature_matricies, data_quantities), ridge_alpha) selected_features, selected_values = selected_model parameters.update(zip(*(selected_features, selected_values))) # Add these parameters to be fixed for the next fitting step fixed_portion = np.array(selected_features, dtype=np.object) fixed_portion = np.dot(fixed_portion, selected_values) fixed_portions.append(fixed_portion) return parameters