def get_f0(audio, minf0=20, maxf0=22050, cf=0.9, ws=2048, hs=256): ''' Args: audio (array): audio signal (output from MonoLoader) minf0 (int): minimum allowed frequency maxf0 (int): maximun allowed frequency cf (float): confidence threshold (0 - 1) ws (int): window size hp (int): hop size Returns: f0 (array): ''' # instantiate Essentia functions w = es.Windowing(type='hann', zeroPadding=ws) spec = es.Spectrum() yin = es.PitchYinFFT(minFrequency=minf0, maxFrequency=maxf0, frameSize=ws) # empty lists for f0 and confidence f0 = [] conf = [] # iterate over frames for frame in es.FrameGenerator(audio, frameSize=ws, hopSize=hs): p, pc = yin(spec(w(frame))) f0.append(p) conf.append(pc) # convert lists to np.arrays f0 = np.array(f0) conf = np.array(conf) # return f0 over given confidence f0[conf < cf] = 0 return f0
def segment(audio, hopSize, frameSize, rms_onset_threshold, mel_onset_threshold, flux_onset_threshold, onset_threshold): # init algorithms o_mel = estd.OnsetDetection(method='melflux') o_rms = estd.OnsetDetection(method='rms') o_hfc = estd.OnsetDetection(method='hfc') o_flux = estd.OnsetDetection(method='flux') fft = estd.FFT() c2p = estd.CartesianToPolar() pool = essentia.Pool() frame_generator = estd.FrameGenerator(audio, frameSize=frameSize, hopSize=hopSize) w = estd.Windowing(type='hann') yin = estd.PitchYinFFT(frameSize=frameSize, minFrequency=40, maxFrequency=2500, interpolate=True) spectrum = estd.Spectrum() loudness = estd.Loudness() # control parameters attack = False detection = True mel_onset_value = 0 rms_onset_value = 0 # output variables onset = None sustain = None for index, frame in enumerate(frame_generator): mag, phase = c2p(fft(w(frame))) _, conf = yin(spectrum(w(frame))) loud = loudness(frame) mel_onset = o_mel(mag, phase) rms_onset = o_rms(mag, phase) hfc_onset = o_hfc(mag, phase) flux_onset = o_flux(mag, phase) pool.add('onsets_mel', mel_onset) pool.add('onsets_rms', rms_onset) pool.add('onsets_hfc', hfc_onset) pool.add('onsets_flux', flux_onset) pool.add('conf', conf) pool.add('loudness', loud) # condition for onset if detection and (flux_onset > flux_onset_threshold or mel_onset > mel_onset_threshold) \ and rms_onset > rms_onset_threshold and loud > onset_threshold: onset = index attack = True detection = False mel_onset_value = mel_onset rms_onset_value = rms_onset # condition for beginning of sustain if attack and conf > 0.5 and rms_onset < rms_onset_value * .05 and mel_onset < mel_onset_value * .3: attack = False sustain = index return onset, sustain
def feature_extractor_standard(audio_in, frameSize, hopSize, aggLen): #print('Starting Feature Extraction for %s',filename) #creating algorithm objects and pool objects win=es.Windowing() spec=es.Spectrum() centroid = es.Centroid() flatness = es.Flatness() mfcc=es.MFCC(lowFrequencyBound=40) pitchYin = es.PitchYinFFT() #Compute features frame by frame mfcc_ftrsArray = [] sCentroidArray = [] sFlatnessArray = [] pConfArray = [] for frame in es.FrameGenerator(audio_in, frameSize = frameSize, hopSize = hopSize): spectrum = spec(win(frame)) band_eneg, mfcc_ftrs=mfcc(spectrum) sCentroid = centroid(spectrum) sFlatness = flatness(spectrum) pitch, pitchConf = pitchYin(spectrum) #sFlux = flux(spectrum) mfcc_ftrsArray.append(mfcc_ftrs) sCentroidArray.append(sCentroid) sFlatnessArray.append(sFlatness) pConfArray.append(pitchConf) meanMFCC = [] varMFCC = [] meanCent = [] varCent = [] meanFlat = [] varFlat = [] meanPConf = [] varPConf = [] for ii in xrange(0, len(mfcc_ftrsArray)-aggLen,aggLen): meanMFCC.append(np.mean(mfcc_ftrsArray[ii:ii+aggLen],axis=0)) varMFCC.append(np.var(mfcc_ftrsArray[ii:ii+aggLen],axis=0)) meanCent.append(np.mean(sCentroidArray[ii:ii+aggLen])) varCent.append(np.var(sCentroidArray[ii:ii+aggLen])) meanFlat.append(np.mean(sFlatnessArray[ii:ii+aggLen])) varFlat.append(np.var(sFlatnessArray[ii:ii+aggLen])) meanPConf.append(np.mean(pConfArray[ii:ii+aggLen])) varPConf.append(np.var(pConfArray[ii:ii+aggLen])) return np.concatenate((np.array(meanMFCC), np.array(varMFCC), np.transpose(np.array(meanCent, ndmin=2)), np.transpose(np.array(varCent, ndmin=2)), np.transpose(np.array(meanFlat,ndmin=2)), np.transpose(np.array(varFlat,ndmin=2)), np.transpose(np.array(meanPConf,ndmin=2)), np.transpose(np.array(varPConf,ndmin=2))),axis=1)
def f0Yin(x, N, H, minf0, maxf0): # fundamental frequency detection using the Yin algorithm # x: input sound, N: window size, # minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz, # returns f0 spectrum = ess.Spectrum(size=N) window = ess.Windowing(size=N, type='hann') pitchYin = ess.PitchYinFFT(minFrequency=minf0, maxFrequency=maxf0) pin = 0 pend = x.size - N f0 = [] while pin < pend: mX = spectrum(window(x[pin:pin + N])) f0t = pitchYin(mX) f0 = np.append(f0, f0t[0]) pin += H return f0
def pitchProcessing_audio(audio): N = 2 * framesize # padding 1 time framesize SPECTRUM = ess.Spectrum(size=N) WINDOW = ess.Windowing(type='blackmanharris62', zeroPadding=N - framesize) PITCHYIN = ess.PitchYinFFT(frameSize=N, sampleRate=fs) pitch = [] pitchConfidence = [] for frame in ess.FrameGenerator(audio, frameSize=framesize, hopSize=hopsize): frame = WINDOW(frame) mXFrame = SPECTRUM(frame) pitchFrame, pitchConfidenceFrame = PITCHYIN(mXFrame) pitch.append(pitchFrame) pitchConfidence.append(pitchConfidenceFrame) # discard pitch below 65, higher than 1000 Hz, confidence below 0.85 index_keep = discardFrameByConfidence(pitch, pitchConfidence, 65, 1000, 0.85) return index_keep
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # temporal descriptors lpc = ess.LPC(order=10, type='warped', sampleRate=sampleRate) zerocrossingrate = ess.ZeroCrossingRate() # frame algorithms frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = ess.Spectrum(size=frameSize) # spectral algorithms barkbands = ess.BarkBands(sampleRate=sampleRate) centralmoments = ess.CentralMoments() crest = ess.Crest() centroid = ess.Centroid() decrease = ess.Decrease() spectral_contrast = ess.SpectralContrast(frameSize=frameSize, sampleRate=sampleRate, numberBands=6, lowFrequencyBound=20, highFrequencyBound=11000, neighbourRatio=0.4, staticDistribution=0.15) distributionshape = ess.DistributionShape() energy = ess.Energy() # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers energyband_bass = ess.EnergyBand(startCutoffFrequency=20.0, stopCutoffFrequency=150.0, sampleRate=sampleRate) energyband_middle_low = ess.EnergyBand(startCutoffFrequency=150.0, stopCutoffFrequency=800.0, sampleRate=sampleRate) energyband_middle_high = ess.EnergyBand(startCutoffFrequency=800.0, stopCutoffFrequency=4000.0, sampleRate=sampleRate) energyband_high = ess.EnergyBand(startCutoffFrequency=4000.0, stopCutoffFrequency=20000.0, sampleRate=sampleRate) flatnessdb = ess.FlatnessDB() flux = ess.Flux() harmonic_peaks = ess.HarmonicPeaks() hfc = ess.HFC() mfcc = ess.MFCC() rolloff = ess.RollOff() rms = ess.RMS() strongpeak = ess.StrongPeak() # pitch algorithms pitch_detection = ess.PitchYinFFT(frameSize=frameSize, sampleRate=sampleRate) pitch_salience = ess.PitchSalience() # dissonance spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency') dissonance = ess.Dissonance() # spectral complexity # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005) INFO('Computing Low-Level descriptors...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 pitches, pitch_confidences = [], [] progress = Progress(total=total_frames) #scPool = es.Pool() # pool for spectral contrast for frame in frames: frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate] # pool.setCurrentScope(frameScope) # silence rate # pool.add(namespace + '.' + 'silence_rate_60dB', es.isSilent(frame)) pool.add(namespace + '.' + 'silence_rate_60dB', is_silent_threshold(frame, -60)) pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30)) pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20)) if options['skipSilence'] and es.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue # temporal descriptors pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame)) (frame_lpc, frame_lpc_reflection) = lpc(frame) pool.add(namespace + '.' + 'temporal_lpc', frame_lpc) frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # spectrum-based descriptors power_spectrum = frame_spectrum ** 2 pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum)) pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum)) pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum)) pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum)) pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum)) pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum)) # central moments descriptors frame_centralmoments = centralmoments(power_spectrum) (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments) pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis) pool.add(namespace + '.' + 'spectral_spread', frame_spread) pool.add(namespace + '.' + 'spectral_skewness', frame_skewness) # dissonance (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) frame_dissonance = dissonance(frame_frequencies, frame_magnitudes) pool.add(namespace + '.' + 'dissonance', frame_dissonance) # mfcc (frame_melbands, frame_mfcc) = mfcc(frame_spectrum) pool.add(namespace + '.' + 'mfcc', frame_mfcc) # spectral contrast (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum) #scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs) #scPool.add(namespace + '.' + 'scvalleys', sc_valleys) pool.add(namespace + '.' + 'spectral_contrast', sc_coeffs) # barkbands-based descriptors frame_barkbands = barkbands(frame_spectrum) pool.add(namespace + '.' + 'barkbands', frame_barkbands) pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands)) pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands)) barkbands_centralmoments = ess.CentralMoments(range=len(frame_barkbands) - 1) (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape( barkbands_centralmoments(frame_barkbands)) pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread) pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness) pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) if frame_pitch > 0 and frame_pitch <= 20000.: pool.add(namespace + '.' + 'pitch', frame_pitch) pitches.append(frame_pitch) pitch_confidences.append(frame_pitch_confidence) pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence) frame_pitch_salience = pitch_salience(frame_spectrum[:-1]) pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience) # spectral complexity pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # if no 'temporal_zerocrossingrate' it means that this is a silent file if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace): raise ess.EssentiaError('This is a silent file!') #spectralContrastPCA(scPool, pool) # build pitch value histogram from math import log from numpy import bincount # convert from Hz to midi notes midipitches = [] unknown = 0 for freq in pitches: if freq > 0. and freq <= 12600: midipitches.append(12 * (log(freq / 6.875) / 0.69314718055995) - 3.) else: unknown += 1 if len(midipitches) > 0: # compute histogram midipitchhist = bincount(midipitches) # set 0 midi pitch to be the number of pruned value midipitchhist[0] = unknown # normalise midipitchhist = [val / float(sum(midipitchhist)) for val in midipitchhist] # zero pad for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0) else: midipitchhist = [0.] * 128 midipitchhist[0] = 1. # pitchhist = ess.array(zip(range(len(midipitchhist)), midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist) # , pool.GlobalScope) # the code below is the same as the one above: # for note in midipitchhist: # pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note) # print "midi note:", note pitch_centralmoments = ess.CentralMoments(range=len(midipitchhist) - 1) (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape( pitch_centralmoments(midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread) # , pool.GlobalScope) progress.finish()
def algorithm_pitch_note_essentia(sound): """ Estimates the note of a given audio file. :param sound: sound dictionary from dataset :return: dictionary with results per different methods """ results = dict() audio = load_audio_file(file_path=sound[SOUND_FILE_KEY], sample_rate=44100) frameSize = 1024 hopsize = frameSize # Estimate pitch using PitchYin frames = estd.FrameGenerator(audio, frameSize=frameSize, hopSize=hopsize) pitchDetect = estd.PitchYin(frameSize=frameSize, sampleRate=44100) pitches = [] confidence = [] for frame in frames: f, conf = pitchDetect(frame) pitches += [f] confidence += [conf] pitches = [pitch for pitch in pitches if pitch > 0] if not pitches: pitch_median = 0.1 else: pitch_median = median(pitches) midi_note = frequency_to_midi_note(pitch_median) note = midi_note_to_note(midi_note) results.update({ 'EssentiaPitchYin': { 'note': note, 'midi_note': midi_note, 'pitch': pitch_median } }) # Estimate pitch using PithYinFFT frames = estd.FrameGenerator(audio, frameSize=frameSize, hopSize=hopsize) pitchDetect = estd.PitchYinFFT(frameSize=frameSize, sampleRate=44100) win = estd.Windowing(type='hann') pitches = [] confidence = [] for frame in frames: spec = estd.Spectrum()(win(frame)) f, conf = pitchDetect(spec) pitches += [f] confidence += [conf] pitches = [pitch for pitch in pitches if pitch > 0] if not pitches: pitch_median = 0.1 else: pitch_median = median(pitches) midi_note = frequency_to_midi_note(pitch_median) note = midi_note_to_note(midi_note) results.update({ 'EssentiaPitchYinFFT': { 'note': note, 'midi_note': midi_note, 'pitch': pitch_median } }) return results
def reComputeDescriptors(inputAudioFile, outputJsonFile): """ :param inputAudioFile: :param outputJsonFile: :return: """ M = 2048 N = 2048 H = 1024 fs = 44100 W = 'blackmanharris62' #spectrum = ess.Spectrum(size=N) spectrum = ess.Spectrum() #window = ess.Windowing(size=M, type=W) window = ess.Windowing(type=W) #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1) mfcc = ess.MFCC() spectral_peaks = ess.SpectralPeaks(minFrequency=1, maxFrequency=20000, maxPeaks=100, sampleRate=fs, magnitudeThreshold=0, orderBy="magnitude") dissonance = ess.Dissonance() #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs) pitch_detection = ess.PitchYinFFT() harmonic_peaks = ess.HarmonicPeaks() inharmonicity = ess.Inharmonicity() #spectral_contrast = ess.SpectralContrast(sampleRate=fs) spectral_contrast = ess.SpectralContrast() centroid = ess.Centroid() log_attack_time = ess.LogAttackTime() hfc = ess.HFC() # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame, see lowlevel.py spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005) energy = ess.Energy() x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)() frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True) E = [] numFrames = 0 for frame in frames: numFrames += 1 E_frame = energy(frame) E.append(E_frame) E_max = np.max(E) frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True) pools = [(t, es.Pool()) for t in dscr.threshold] for frame in frames: eNorm = energy(frame) / E_max threshPools = [] for t, pool in pools: if eNorm >= t: threshPools.append(pool) mX = spectrum(window(frame)) mfcc_bands, mfcc_coeffs = mfcc(mX) [pool.add('lowlevel.mfcc', mfcc_coeffs) for pool in threshPools] #[pool.add('lowlevel.mfcc_bands', mfcc_bands) for pool in threshPools] pfreq, pmag = spectral_peaks(mX) inds = pfreq.argsort() pfreq_sorted = pfreq[inds] pmag_sorted = pmag[inds] diss = dissonance(pfreq_sorted, pmag_sorted) [pool.add('lowlevel.dissonance', diss) for pool in threshPools] pitch, pitch_confidence = pitch_detection(mX) phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch) if len(phfreq) > 1: inharm = inharmonicity(phfreq, phmag) [pool.add('sfx.inharmonicity', inharm) for pool in threshPools] sc_coeffs, sc_valleys = spectral_contrast(mX) [pool.add('lowlevel.spectral_contrast', sc_coeffs) for pool in threshPools] c = centroid(mX) [pool.add('lowlevel.spectral_centroid', c) for pool in threshPools] lat = log_attack_time(frame) [pool.add('sfx.logattacktime', lat) for pool in threshPools] h = hfc(mX) [pool.add('lowlevel.hfc', h) for pool in threshPools] spec_complx = spectral_complexity(mX) [pool.add('lowlevel.spectral_complexity', spec_complx) for pool in threshPools] #calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var']) calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean']) aggrPools = [calc_Mean_Var(pool) for t, pool in pools] features = {} [appendFeatures(features, aggrPools[i], ("ethc"+str(dscr.thresholdSelect[i]))) for i in range(len(aggrPools))] json.dump(features, open(outputJsonFile, 'w'))
def reComputeDescriptors(inputAudioFile, outputJsonFile): """ :param inputAudioFile: :param outputJsonFile: :return: """ #help(ess.SpectralContrast) """ orig M = 1024 N = 1024 H = 512 fs = 44100 W = 'hann' """ """ freesound Real sampleRate = 44100; int frameSize = 2048; int hopSize = 1024; int zeroPadding = 0; string silentFrames ="noise"; string windowType = "blackmanharris62"; // Silence Rate Real thresholds_dB[] = { -20, -30, -60 }; vector<Real> thresholds(ARRAY_SIZE(thresholds_dB)); for (uint i=0; i<thresholds.size(); i++) { thresholds[i] = db2lin(thresholds_dB[i]/2.0); } """ M = 2048 N = 2048 H = 1024 fs = 44100 W = 'blackmanharris62' #silentFrames = "noise" #thresholds_dB = np.array([ -20, -30, -60 ]) #thresholds = np.power (10.0, thresholds_dB / 20) #spectrum = ess.Spectrum(size=N) spectrum = ess.Spectrum() #window = ess.Windowing(size=M, type=W) window = ess.Windowing(type=W) #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1) mfcc = ess.MFCC() spectral_peaks = ess.SpectralPeaks(minFrequency=1, maxFrequency=20000, maxPeaks=100, sampleRate=fs, magnitudeThreshold=0, orderBy="magnitude") dissonance = ess.Dissonance() #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs) pitch_detection = ess.PitchYinFFT() harmonic_peaks = ess.HarmonicPeaks() inharmonicity = ess.Inharmonicity() #spectral_contrast = ess.SpectralContrast(sampleRate=fs) spectral_contrast = ess.SpectralContrast() centroid = ess.Centroid() log_attack_time = ess.LogAttackTime() hfc = ess.HFC() energy = ess.Energy() x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)() frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True) pool = es.Pool() for frame in frames: mX = spectrum(window(frame)) mfcc_bands, mfcc_coeffs = mfcc(mX) pool.add('lowlevel.mfcc', mfcc_coeffs) pool.add('lowlevel.mfcc_bands', mfcc_bands) pfreq, pmag = spectral_peaks(mX) inds = pfreq.argsort() pfreq_sorted = pfreq[inds] pmag_sorted = pmag[inds] diss = dissonance(pfreq_sorted, pmag_sorted) pool.add('lowlevel.dissonance', diss) pitch, pitch_confidence = pitch_detection(mX) phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch) if len(phfreq) > 1: inharm = inharmonicity(phfreq, phmag) pool.add('sfx.inharmonicity', inharm) sc_coeffs, sc_valleys = spectral_contrast(mX) pool.add('lowlevel.spectral_contrast', sc_coeffs) c = centroid(mX) pool.add('lowlevel.spectral_centroid', c) lat = log_attack_time(frame) pool.add('sfx.logattacktime', lat) h = hfc(mX) pool.add('lowlevel.hfc', h) calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var']) aggrPool = calc_Mean_Var(pool) features = makeFeatures(aggrPool) json.dump(features, open(outputJsonFile, 'w'))
def compute(audio, pool, options): INFO('Computing SFX descriptors...') # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = ess.Spectrum(size=frameSize) # pitch algorithm pitch_detection = ess.PitchYinFFT(frameSize=2048, sampleRate=sampleRate) # sfx descriptors spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency') harmonic_peaks = ess.HarmonicPeaks() inharmonicity = ess.Inharmonicity() odd2evenharmonicenergyratio = ess.OddToEvenHarmonicEnergyRatio() tristimulus = ess.Tristimulus() # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total=total_frames) for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] # pool.setCurrentScope(frameScope) if options['skipSilence'] and es.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) # spectral peaks based descriptors frame_frequencies, frame_magnitudes = spectral_peaks(frame_spectrum) # ERROR CORRECTION - hoinx 2015-12 errIdx = np.where(frame_frequencies < 1) frame_frequencies = np.delete(frame_frequencies, errIdx) frame_magnitudes = np.delete(frame_magnitudes, errIdx) (frame_harmonic_frequencies, frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies, frame_magnitudes, frame_pitch) if len(frame_harmonic_frequencies) > 1: frame_inharmonicity = inharmonicity(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity) frame_tristimulus = tristimulus(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'tristimulus', frame_tristimulus) frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio( frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'odd2evenharmonicenergyratio', frame_odd2evenharmonicenergyratio) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize envelope = ess.Envelope() file_envelope = envelope(audio) # temporal statistics decrease = ess.Decrease() pool.add(namespace + '.' + 'temporal_decrease', decrease(file_envelope)) # , pool.GlobalScope) centralmoments = ess.CentralMoments() file_centralmoments = centralmoments(file_envelope) distributionshape = ess.DistributionShape() (file_spread, file_skewness, file_kurtosis) = distributionshape(file_centralmoments) pool.add(namespace + '.' + 'temporal_spread', file_spread) # , pool.GlobalScope) pool.add(namespace + '.' + 'temporal_skewness', file_skewness) # , pool.GlobalScope) pool.add(namespace + '.' + 'temporal_kurtosis', file_kurtosis) # , pool.GlobalScope) centroid = ess.Centroid() pool.add(namespace + '.' + 'temporal_centroid', centroid(file_envelope)) # , pool.GlobalScope) # effective duration effectiveduration = ess.EffectiveDuration() pool.add(namespace + '.' + 'effective_duration', effectiveduration(file_envelope)) # , pool.GlobalScope) # log attack time logattacktime = ess.LogAttackTime() pool.add(namespace + '.' + 'logattacktime', logattacktime(audio)) # , pool.GlobalScope) # strong decay strongdecay = ess.StrongDecay() pool.add(namespace + '.' + 'strongdecay', strongdecay(file_envelope)) # , pool.GlobalScope) # dynamic profile flatness = ess.FlatnessSFX() pool.add(namespace + '.' + 'flatness', flatness(file_envelope)) # , pool.GlobalScope) """ # onsets number onsets_number = len(pool['rhythm.onset_times'][0]) pool.add(namespace + '.' + 'onsets_number', onsets_number) # , pool.GlobalScope) """ # morphological descriptors max_to_total = ess.MaxToTotal() pool.add(namespace + '.' + 'max_to_total', max_to_total(file_envelope)) # , pool.GlobalScope) tc_to_total = ess.TCToTotal() pool.add(namespace + '.' + 'tc_to_total', tc_to_total(file_envelope)) # , pool.GlobalScope) derivativeSFX = ess.DerivativeSFX() (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope) pool.add(namespace + '.' + 'der_av_after_max', der_av_after_max) # , pool.GlobalScope) pool.add(namespace + '.' + 'max_der_before_max', max_der_before_max) # , pool.GlobalScope) # pitch profile """ pitch = pool['lowlevel.pitch'] if len(pitch) > 1: pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch)) # , pool.GlobalScope) min_to_total = ess.MinToTotal() pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch)) # , pool.GlobalScope) pitch_centroid = ess.Centroid(range=len(pitch) - 1) pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch)) # , pool.GlobalScope) pitch_after_max_to_before_max_energy_ratio = ess.AfterMaxToBeforeMaxEnergyRatio() pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', pitch_after_max_to_before_max_energy_ratio(pitch)) # , pool.GlobalScope) else: pool.add(namespace + '.' + 'pitch_max_to_total', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_min_to_total', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_centroid', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0) # , pool.GlobalScope) """ progress.finish()
def extractFeatures(audio_data): """ Recebe um vetor de reais representando um sinal de áudio, calcula suas features, agrega-as em uma Pool() de essentia e retorna esta Pool """ from numpy import ndarray assert (type(audio_data) is ndarray) assert ("float" in str(audio_data.dtype)) #Inicia Pool() output_pool = es.Pool() #Calcula espectro do sinal output_pool.set(pk_spectrum, es_mode.Spectrum()(audio_data)) #Calcula EnergyBandRatio energy_band_ratio = es_mode.EnergyBandRatio()(output_pool[pk_spectrum]) output_pool.set(pk_energy_band_ratio, energy_band_ratio) #Calcula MaxMagFreq max_mag_freq = es_mode.MaxMagFreq()(output_pool[pk_spectrum]) output_pool.set(pk_max_mag_freq, max_mag_freq) #Calcula SpectralCentroidTime spectral_centroid_time = es_mode.SpectralCentroidTime()(audio_data) output_pool.set(pk_spectral_centroid_time, spectral_centroid_time) #Calcula SpectralComplexity spectral_complexity = es_mode.SpectralComplexity()( output_pool[pk_spectrum]) output_pool.set(pk_spectral_complexity, spectral_complexity) #Calcula StrongPeak strong_peak = es_mode.StrongPeak()(output_pool[pk_spectrum]) output_pool.set(pk_strong_peak, strong_peak) #Calcula SpectralPeaks sp_freq, sp_mag = es_mode.SpectralPeaks()(output_pool[pk_spectrum]) #corta o DC, se houver, e pedido de HarmonicPeaks if sp_freq[0] == 0: sp_freq = sp_freq[1:] sp_mag = sp_mag[1:] output_pool.set(pk_spectral_peaks_freq, sp_freq) output_pool.set(pk_spectral_peaks_mag, sp_mag) ###################################### # Para Inharmonicity # ###################################### #Calcula PitchYinFFT pitch_yin_fft, pitch_prob_yin_fft = es_mode.PitchYinFFT()( output_pool[pk_spectrum]) output_pool.set(pk_pitch, pitch_yin_fft) output_pool.set(pk_pitch_prob, pitch_prob_yin_fft) #Calcula HarmonicPeaks hp_freq, hp_mag = es_mode.HarmonicPeaks()(output_pool[pk_spectral_peaks_freq],\ output_pool[pk_spectral_peaks_mag],\ output_pool[pk_pitch] ) output_pool.set(pk_harmonic_peaks_freq, hp_freq) output_pool.set(pk_harmonic_peaks_mag, hp_mag) #Calcula Inharmonicity inharmonicity = es_mode.Inharmonicity()(output_pool[pk_harmonic_peaks_freq],\ output_pool[pk_harmonic_peaks_mag]) output_pool.set(pk_inharmonicity, inharmonicity) #Acaba Inharmonicity##################################### #Calcula SpectralContrast frame_size = 2 * (output_pool[pk_spectrum].size - 1) spectral_contrast, spectral_valley = \ es_mode.SpectralContrast(frameSize=frame_size)(output_pool[pk_spectrum]) output_pool.set(pk_spectral_contrast, spectral_contrast) output_pool.set(pk_spectral_valley, spectral_valley) #Calcula SpectralWhitening spectral_whitening = \ es_mode.SpectralWhitening()(output_pool[pk_spectrum],\ output_pool[pk_spectral_peaks_freq],\ output_pool[pk_spectral_peaks_mag]) output_pool.set(pk_spectral_whitening, spectral_whitening) return output_pool