def get_example_tree(): # Set dashed blue lines in all leaves nst1 = NodeStyle() nst1["bgcolor"] = "LightSteelBlue" nst2 = NodeStyle() nst2["bgcolor"] = "Moccasin" nst3 = NodeStyle() nst3["bgcolor"] = "DarkSeaGreen" nst4 = NodeStyle() nst4["bgcolor"] = "Khaki" t = Tree("((((a1,a2),a3), ((b1,b2),(b3,b4))), ((c1,c2),c3));") for n in t.traverse(): n.dist = 0 n1 = t.get_common_ancestor("a1", "a2", "a3") n1.set_style(nst1) n2 = t.get_common_ancestor("b1", "b2", "b3", "b4") n2.set_style(nst2) n3 = t.get_common_ancestor("c1", "c2", "c3") n3.set_style(nst3) n4 = t.get_common_ancestor("b3", "b4") n4.set_style(nst4) ts = TreeStyle() ts.layout_fn = layout ts.show_leaf_name = False ts.mode = "c" ts.root_opening_factor = 1 return t, ts
def get_example_tree(): # Random tree t = Tree() t.populate(20, random_branches=True) # Some random features in all nodes for n in t.traverse(): n.add_features(weight=random.randint(0, 50)) # Create an empty TreeStyle ts = TreeStyle() # Set our custom layout function ts.layout_fn = layout # Draw a tree ts.mode = "c" # We will add node names manually ts.show_leaf_name = False # Show branch data ts.show_branch_length = True ts.show_branch_support = True return t, ts
def get_example_tree(): t = Tree() ts = TreeStyle() ts.layout_fn = layout ts.mode = "r" ts.show_leaf_name = False t.populate(10) return t, ts
def get_example_tree(): t = Tree() t.populate(8, reuse_names=False) ts = TreeStyle() ts.layout_fn = master_ly ts.title.add_face(faces.TextFace("Drawing your own Qt Faces", fsize=15), 0) return t, ts
def get_example_tree(): t = Tree() ts = TreeStyle() ts.layout_fn = layout ts.mode = "c" ts.show_leaf_name = True ts.min_leaf_separation = 15 t.populate(100) return t, ts
def get_example_tree(): t = Tree() t.populate(10) ts = TreeStyle() ts.rotation = 45 ts.show_leaf_name = False ts.layout_fn = rotation_layout return t, ts
def get_example_tree(): t = Tree() t.populate(8) # Node style handling is no longer limited to layout functions. You # can now create fixed node styles and use them many times, save them # or even add them to nodes before drawing (this allows to save and # reproduce an tree image design) # Set bold red branch to the root node style = NodeStyle() style["fgcolor"] = "#0f0f0f" style["size"] = 0 style["vt_line_color"] = "#ff0000" style["hz_line_color"] = "#ff0000" style["vt_line_width"] = 8 style["hz_line_width"] = 8 style["vt_line_type"] = 0 # 0 solid, 1 dashed, 2 dotted style["hz_line_type"] = 0 t.set_style(style) #Set dotted red lines to the first two branches style1 = NodeStyle() style1["fgcolor"] = "#0f0f0f" style1["size"] = 0 style1["vt_line_color"] = "#ff0000" style1["hz_line_color"] = "#ff0000" style1["vt_line_width"] = 2 style1["hz_line_width"] = 2 style1["vt_line_type"] = 2 # 0 solid, 1 dashed, 2 dotted style1["hz_line_type"] = 2 t.children[0].img_style = style1 t.children[1].img_style = style1 # Set dashed blue lines in all leaves style2 = NodeStyle() style2["fgcolor"] = "#000000" style2["shape"] = "circle" style2["vt_line_color"] = "#0000aa" style2["hz_line_color"] = "#0000aa" style2["vt_line_width"] = 2 style2["hz_line_width"] = 2 style2["vt_line_type"] = 1 # 0 solid, 1 dashed, 2 dotted style2["hz_line_type"] = 1 for l in t.iter_leaves(): l.img_style = style2 ts = TreeStyle() ts.layout_fn = layout ts.show_leaf_name = False return t, ts
def get_example_tree(): # Create a random tree and add to each leaf a random set of motifs # from the original set t = Tree() t.populate(10) # for l in t.iter_leaves(): # seq_motifs = [list(m) for m in motifs] #sample(motifs, randint(2, len(motifs))) # seqFace = SeqMotifFace(seq, seq_motifs, intermotif_format="line", # seqtail_format="compactseq", scale_factor=1) # seqFace.margin_bottom = 4 # f = l.add_face(seqFace, 0, "aligned") ts = TreeStyle() ts.layout_fn = layout t.show(tree_style=ts) return t, ts
def draw(t, draw_alg=True): def ly(node): node.img_style['vt_line_width'] = 1 node.img_style['hz_line_width'] = 1 if node.is_leaf(): add_face_to_node(TextFace(' (%s)' %node.name.split()[0].replace("/exon2", ""), fsize=10, fgcolor='slategrey', tight_text=False), node, 1, position='branch-right') add_face_to_node(TextFace(node.species, fsize=12, fgcolor='black', fstyle='italic', tight_text=False), node, 0, position='branch-right') c = 1 for tname in tracked_clades: if tname in node.named_lineage: linF = TextFace(tname, fsize=10, fgcolor='white') linF.margin_left = 3 linF.background.color = lin2color[tname] add_face_to_node(linF, node, c, position='aligned') c += 1 for n in xrange(1, 20-(c-1)): add_face_to_node(TextFace('', fsize=10, fgcolor='slategrey'), node, c, position='aligned') c+=1 if draw_alg and 'sequence' in node.features: #seqFace = SequenceFace(node.sequence,"aa",13) seqFace = SeqMotifFace(node.sequence, []) # [10, 100, "[]", None, 10, "black", "rgradient:blue", "arial|8|white|domain Name"], motifs = [] last_lt = None for c, lt in enumerate(node.sequence): if lt != '-': if last_lt is None: last_lt = c if c+1 == len(node.sequence): start, end = last_lt, c w = end-start motifs.append([start, end, "[]", w, 13, "slategrey", "slategrey", None]) last_lt = None elif lt == '-': if last_lt is not None: start, end = last_lt, c-1 w = end-start motifs.append([start, end, "[]", w, 13, "slategrey", "slategrey", None]) last_lt = None if not motifs: print node, node.sequence seqFace = SeqMotifFace(node.sequence, motifs, intermotif_format="line", seqtail_format="line", scale_factor=1) add_face_to_node(seqFace, node, 20, aligned=True) else: if node.up: add_face_to_node(TextFace('% 3g' %node.support, fsize=11, fgcolor='indianred'), node, 0, position='branch-top') if hasattr(node, "support2") and node.up: add_face_to_node(TextFace('% 3g' %float(node.support2), fsize=11, fgcolor='steelblue'), node, 0, position='branch-bottom') node.img_style['size'] = 0 node.img_style['hz_line_color'] = 'black' node.img_style['vt_line_color'] = 'black' colors = random_color(num=len(tracked_clades)) lin2color = dict([(ln, colors[i]) for i, ln in enumerate(tracked_clades)]) ts = TreeStyle() ts.draw_aligned_faces_as_table = False ts.draw_guiding_lines = False ts.show_leaf_name = False ts.show_branch_support = False ts.layout_fn = ly print 'Rendering tree.pdf' t.render('tree.svg', tree_style=ts) t.render('tree.png', tree_style=ts)
def draw_tree(tree, conf, outfile): try: from ete_dev import (add_face_to_node, AttrFace, TextFace, TreeStyle, RectFace, CircleFace, SequenceFace, random_color, SeqMotifFace) except ImportError as e: print e return def ly_basic(node): if node.is_leaf(): node.img_style['size'] = 0 else: node.img_style['size'] = 0 node.img_style['shape'] = 'square' if len(MIXED_RES) > 1 and hasattr(node, "tree_seqtype"): if node.tree_seqtype == "nt": node.img_style["bgcolor"] = "#CFE6CA" ntF = TextFace("nt", fsize=6, fgcolor='#444', ftype='Helvetica') add_face_to_node(ntF, node, 10, position="branch-bottom") if len(NPR_TREES) > 1 and hasattr(node, "tree_type"): node.img_style['size'] = 4 node.img_style['fgcolor'] = "steelblue" node.img_style['hz_line_width'] = 1 node.img_style['vt_line_width'] = 1 def ly_leaf_names(node): if node.is_leaf(): spF = TextFace(node.species, fsize=10, fgcolor='#444444', fstyle='italic', ftype='Helvetica') add_face_to_node(spF, node, column=0, position='branch-right') if hasattr(node, 'genename'): geneF = TextFace(" (%s)" %node.genename, fsize=8, fgcolor='#777777', ftype='Helvetica') add_face_to_node(geneF, node, column=1, position='branch-right') def ly_supports(node): if not node.is_leaf() and node.up: supFace = TextFace("%0.2g" %(node.support), fsize=7, fgcolor='indianred') add_face_to_node(supFace, node, column=0, position='branch-top') def ly_tax_labels(node): if node.is_leaf(): c = LABEL_START_COL largest = 0 for tname in TRACKED_CLADES: if hasattr(node, "named_lineage") and tname in node.named_lineage: linF = TextFace(tname, fsize=10, fgcolor='white') linF.margin_left = 3 linF.margin_right = 2 linF.background.color = lin2color[tname] add_face_to_node(linF, node, c, position='aligned') c += 1 for n in xrange(c, len(TRACKED_CLADES)): add_face_to_node(TextFace('', fsize=10, fgcolor='slategrey'), node, c, position='aligned') c+=1 def ly_full_alg(node): pass def ly_block_alg(node): if node.is_leaf(): if 'sequence' in node.features: seqFace = SeqMotifFace(node.sequence, []) # [10, 100, "[]", None, 10, "black", "rgradient:blue", "arial|8|white|domain Name"], motifs = [] last_lt = None for c, lt in enumerate(node.sequence): if lt != '-': if last_lt is None: last_lt = c if c+1 == len(node.sequence): start, end = last_lt, c motifs.append([start, end, "()", 0, 12, "slategrey", "slategrey", None]) last_lt = None elif lt == '-': if last_lt is not None: start, end = last_lt, c-1 motifs.append([start, end, "()", 0, 12, "grey", "slategrey", None]) last_lt = None seqFace = SeqMotifFace(node.sequence, motifs, intermotif_format="line", seqtail_format="line", scale_factor=ALG_SCALE) add_face_to_node(seqFace, node, ALG_START_COL, aligned=True) TRACKED_CLADES = ["Eukaryota", "Viridiplantae", "Fungi", "Alveolata", "Metazoa", "Stramenopiles", "Rhodophyta", "Amoebozoa", "Crypthophyta", "Bacteria", "Alphaproteobacteria", "Betaproteobacteria", "Cyanobacteria", "Gammaproteobacteria",] # ["Opisthokonta", "Apicomplexa"] colors = random_color(num=len(TRACKED_CLADES), s=0.45) lin2color = dict([(ln, colors[i]) for i, ln in enumerate(TRACKED_CLADES)]) NAME_FACE = AttrFace('name', fsize=10, fgcolor='#444444') LABEL_START_COL = 10 ALG_START_COL = 40 ts = TreeStyle() ts.draw_aligned_faces_as_table = False ts.draw_guiding_lines = False ts.show_leaf_name = False ts.show_branch_support = False ts.scale = 160 ts.layout_fn = [ly_basic, ly_leaf_names, ly_supports, ly_tax_labels] MIXED_RES = set() MAX_SEQ_LEN = 0 NPR_TREES = [] for n in tree.traverse(): if hasattr(n, "tree_seqtype"): MIXED_RES.add(n.tree_seqtype) if hasattr(n, "tree_type"): NPR_TREES.append(n.tree_type) seq = getattr(n, "sequence", "") MAX_SEQ_LEN = max(len(seq), MAX_SEQ_LEN) if MAX_SEQ_LEN: ALG_SCALE = min(1, 1000./MAX_SEQ_LEN) ts.layout_fn.append(ly_block_alg) if len(NPR_TREES) > 1: rF = RectFace(4, 4, "steelblue", "steelblue") rF.margin_right = 10 rF.margin_left = 10 ts.legend.add_face(rF, 0) ts.legend.add_face(TextFace(" NPR node"), 1) ts.legend_position = 3 if len(MIXED_RES) > 1: rF = RectFace(20, 20, "#CFE6CA", "#CFE6CA") rF.margin_right = 10 rF.margin_left = 10 ts.legend.add_face(rF, 0) ts.legend.add_face(TextFace(" Nucleotide based alignment"), 1) ts.legend_position = 3 try: tree.set_species_naming_function(spname) annotate_tree_with_ncbi(tree) a = tree.search_nodes(species='Dictyostelium discoideum')[0] b = tree.search_nodes(species='Chondrus crispus')[0] #out = tree.get_common_ancestor([a, b]) #out = tree.search_nodes(species='Haemophilus parahaemolyticus')[0].up tree.set_outgroup(out) tree.swap_children() except Exception: pass tree.render(outfile, tree_style=ts, w=170, units='mm', dpi=150) tree.render(outfile+'.svg', tree_style=ts, w=170, units='mm', dpi=150) tree.render(outfile+'.pdf', tree_style=ts, w=170, units='mm', dpi=150)
parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args() reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)]
>Chimp CAC GCC CGA TGG CTC AAC GAA AAG TTA AGA TGC GAA TTG AGA ACT CTG AAA AAA TTG GGA CTG GAC GGC TAC AAG GCA GTA AGT CAG TAC GTT AAA GGT CGT GCG >Orangutan GAT GCA CGC TGG ATC AAC GAA AAG TTA AGA TGC GTA TCG AGA ACT CTG AAA AAA TTG GGA CTG GAC GGC TAC AAG GGA GTA AGT CAA TAC GTT AAA GGT CGT CCG """) #try: # tree.run_model("fb") # tree.run_model("M2") #except: # pass tree.dist = 0 ts = TreeStyle() ts.title.add_face(TextFace("Example for EvolTree, interactivity shows codons", fsize=15), column=0) ts.layout_fn = test_layout_evol #try: # tree.show(tree_style=ts, histfaces=["M2"]) #except: tree.show(tree_style=ts) except: tree = PhyloTree('(Orangutan,Human,Chimp);') tree.link_to_alignment(""" >Chimp HARWLNEKLRCELRTLKKLGLDGYKAVSQYVKGRA >Orangutan DARWINEKLRCVSRTLKKLGLDGYKGVSQYVKGRP >Human DARWHNVKLRCELRTLKKLGLVGFKAVSQFVIRRA """) nt_sequences = {"Human" : "GACGCACGGTGGCACAACGTAAAATTAAGATGTGAATTGAGAACTCTGAAAAAATTGGGACTGGTCGGCTTCAAGGCAGTAAGTCAATTCGTAATACGTCGTGCG",
f.border.width = 0 node.img_style["size"] = 10 node.img_style["shape"] = "square" node.img_style["bgcolor"] = random_color() node.img_style["hz_line_width"] = 0 node.img_style["vt_line_width"] = 0 #if node.is_leaf(): # f = faces.CircleFace(50, "red") # faces.add_face_to_node(f, node, 0, position="aligned") ts = TreeStyle() ts.mode = "c" ts.arc_span = 360 ts.layout_fn = layout ts.show_leaf_name = False ts.show_border = True ts.draw_guiding_lines = False ts.show_scale = True #ts.scale = 60 t = Tree() t.dist = 0 t.size = 0,0 for x in xrange(100): n = t.add_child() n = n.add_child() n = n.add_child() n2 = n.add_child() n3 = n.add_child()
def main(argv): parser = argparse.ArgumentParser(description=__DESCRIPTION__, formatter_class=argparse.RawDescriptionHelpFormatter) # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo. # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version) # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) ) # const - A constant value required by some action and nargs selections. # default - The value produced if the argument is absent from the command line. # type - The type to which the command-line argument should be converted. # choices - A container of the allowable values for the argument. # required - Whether or not the command-line option may be omitted (optionals only). # help - A brief description of what the argument does. # metavar - A name for the argument in usage messages. # dest - The name of the attribute to be added to the object returned by parse_args(). parser.add_argument("--show", dest="show_tree", action="store_true", help="""Display tree after the analysis.""") parser.add_argument("--render", dest="render", action="store_true", help="""Render tree.""") parser.add_argument("--dump", dest="dump", action="store_true", help="""Dump analysis""") parser.add_argument("--explore", dest="explore", type=str, help="""Reads a previously analyzed tree and visualize it""") input_args = parser.add_mutually_exclusive_group() input_args.required=True input_args.add_argument("-t", "--tree", dest="target_tree", nargs="+", type=str, help="""Tree file in newick format""") input_args.add_argument("-tf", dest="tree_list_file", type=str, help="File with the list of tree files") parser.add_argument("--tax", dest="tax_info", type=str, help="If the taxid attribute is not set in the" " newick file for all leaf nodes, a tab file file" " with the translation of name and taxid can be" " provided with this option.") parser.add_argument("--sp_delimiter", dest="sp_delimiter", type=str, help="If taxid is part of the leaf name, delimiter used to split the string") parser.add_argument("--sp_field", dest="sp_field", type=int, default=0, help="field position for taxid after splitting leaf names") parser.add_argument("--ref", dest="ref_tree", type=str, help="Uses ref tree to compute robinson foulds" " distances of the different subtrees") parser.add_argument("--rf-only", dest="rf_only", action = "store_true", help="Skip ncbi consensus analysis") parser.add_argument("--outgroup", dest="outgroup", type=str, nargs="+", help="A list of node names defining the trees outgroup") parser.add_argument("--is_sptree", dest="is_sptree", action = "store_true", help="Assumes no duplication nodes in the tree") parser.add_argument("-o", dest="output", type=str, help="Writes result into a file") parser.add_argument("--tax2name", dest="tax2name", type=str, help="") parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args(argv) if args.sp_delimiter: GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field] else: GET_TAXID = None reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print >>sys.stderr, "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print >>sys.stderr, "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print >>sys.stderr, "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)] if args.target_tree: target_trees += args.target_tree prev_tree = None if args.tax2name: tax2name = cPickle.load(open(args.tax2name)) else: tax2name = {} if args.tax2track: tax2track = cPickle.load(open(args.tax2track)) else: tax2track = {} print len(tax2track), len(tax2name) header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips") print >>OUT, '|'.join([h.ljust(15) for h in header]) if args.ref_tree: print >>sys.stderr, "Reading ref tree from", args.ref_tree reft = Tree(args.ref_tree, format=1) else: reft = None SHOW_TREE = False if args.show_tree or args.render: SHOW_TREE = True prev_broken = set() ENTRIES = [] ncbi.connect_database() for tfile in target_trees: #print tfile t = PhyloTree(tfile, sp_naming_function=None) if GET_TAXID: for n in t.iter_leaves(): n.name = GET_TAXID(n.name) if args.outgroup: if len(args.outgroup) == 1: out = t & args.outgroup[0] else: out = t.get_common_ancestor(args.outgroup) if set(out.get_leaf_names()) ^ set(args.outgroup): raise ValueError("Outgroup is not monophyletic") t.set_outgroup(out) t.ladderize() if prev_tree: tree_compare(t, prev_tree) prev_tree = t if args.tax_info: tax2name, tax2track = annotate_tree_with_taxa(t, args.tax_info, tax2name, tax2track) if args.dump_tax_info: cPickle.dump(tax2track, open("tax2track.pkl", "w")) cPickle.dump(tax2name, open("tax2name.pkl", "w")) print "Tax info written into pickle files" else: for n in t.iter_leaves(): spcode = n.name n.add_features(taxid=spcode) n.add_features(species=spcode) tax2name, tax2track = annotate_tree_with_taxa(t, None, tax2name, tax2track) # Split tree into species trees #subtrees = t.get_speciation_trees() if not args.rf_only: #print "Calculating tree subparts..." t1 = time.time() if not args.is_sptree: subtrees = t.split_by_dups() #print "Subparts:", len(subtrees), time.time()-t1 else: subtrees = [t] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE) #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf else: subtrees = [] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0 ndups = 0 nsubtrees = len(subtrees) rf = 0 rf_max = 0 rf_std = 0 rf_med = 0 common_names = 0 max_size = 0 if reft and len(subtrees) == 1: rf = t.robinson_foulds(reft, attr_t1="realname") rf_max = rf[1] rf = rf[0] rf_med = rf elif reft: #print "Calculating avg RF..." nsubtrees, ndups, subtrees = t.get_speciation_trees(map_features=["taxid"]) #print len(subtrees), "Sub-Species-trees found" avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 print nsubtrees, "subtrees", ndups, "duplications" for ii, subt in enumerate(subtrees): print "\r%d" %ii, sys.stdout.flush() try: partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") except ValueError: pass else: sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) #print partial_rf[:2] rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names] print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" %fixed_string) if fixed else None OUT.write(" New broken: %s\n" %problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w")) print print HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades") print_table(ENTRIES, max_col_width = 50, row_line=True, header=HEADER) if args.output: OUT.close()
col += 1 # Add the corresponding face to the node if name.startswith("Dme"): faces.add_face_to_node(flyFace, node, column=col) elif name.startswith("Dre"): faces.add_face_to_node(fishFace, node, column=col) elif name.startswith("Mms"): faces.add_face_to_node(mouseFace, node, column=col) elif name.startswith("Ptr"): faces.add_face_to_node(chimpFace, node, column=col) elif name.startswith("Hsa"): faces.add_face_to_node(humanFace, node, column=col) elif name.startswith("Cfa"): faces.add_face_to_node(dogFace, node, column=col) # Modifies this node's style node.img_style["size"] = 16 node.img_style["shape"] = "sphere" node.img_style["fgcolor"] = "#AA0000" # If leaf is "Hsa" (h**o sapiens), highlight it using a # different background. if node.is_leaf() and node.name.startswith("Hsa"): node.img_style["bgcolor"] = "#9db0cf" # And, finally, Visualize the tree using my own layout function ts = TreeStyle() ts.layout_fn = mylayout t.render("img_faces.png", w=600, tree_style=ts)
global CONT if CONT >= len(chars): CONT = 0 if node.is_leaf(): node.img_style["size"] = 0 F2= AttrFace("name", tight_text=True) F= TextFace(chars[CONT], tight_text=True) F.inner_border.width = 0 F2.inner_border.width = 0 #faces.add_face_to_node(F ,node, 0, position="branch-right") faces.add_face_to_node(F2 ,node, 1, position="branch-right") CONT += 1 t = Tree() t.populate(20, random_branches=True) ts = TreeStyle() ts.layout_fn = layout ts.mode = "c" ts.show_leaf_name = False temp_tface = TreeFace(t, ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") # MAIN TREE ms = TreeStyle() ms.mode = "r" ms.show_leaf_name = False main_tree.show(tree_style=ms)
def main(argv): parser = argparse.ArgumentParser( description=__DESCRIPTION__, formatter_class=argparse.RawDescriptionHelpFormatter) # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo. # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version) # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) ) # const - A constant value required by some action and nargs selections. # default - The value produced if the argument is absent from the command line. # type - The type to which the command-line argument should be converted. # choices - A container of the allowable values for the argument. # required - Whether or not the command-line option may be omitted (optionals only). # help - A brief description of what the argument does. # metavar - A name for the argument in usage messages. # dest - The name of the attribute to be added to the object returned by parse_args(). parser.add_argument("--show", dest="show_tree", action="store_true", help="""Display tree after the analysis.""") parser.add_argument("--render", dest="render", action="store_true", help="""Render tree.""") parser.add_argument("--dump", dest="dump", action="store_true", help="""Dump analysis""") parser.add_argument( "--explore", dest="explore", type=str, help="""Reads a previously analyzed tree and visualize it""") input_args = parser.add_mutually_exclusive_group() input_args.required = True input_args.add_argument("-t", "--tree", dest="target_tree", nargs="+", type=str, help="""Tree file in newick format""") input_args.add_argument("-tf", dest="tree_list_file", type=str, help="File with the list of tree files") parser.add_argument("--tax", dest="tax_info", type=str, help="If the taxid attribute is not set in the" " newick file for all leaf nodes, a tab file file" " with the translation of name and taxid can be" " provided with this option.") parser.add_argument( "--sp_delimiter", dest="sp_delimiter", type=str, help= "If taxid is part of the leaf name, delimiter used to split the string" ) parser.add_argument( "--sp_field", dest="sp_field", type=int, default=0, help="field position for taxid after splitting leaf names") parser.add_argument("--ref", dest="ref_tree", type=str, help="Uses ref tree to compute robinson foulds" " distances of the different subtrees") parser.add_argument("--rf-only", dest="rf_only", action="store_true", help="Skip ncbi consensus analysis") parser.add_argument( "--outgroup", dest="outgroup", type=str, nargs="+", help="A list of node names defining the trees outgroup") parser.add_argument("--is_sptree", dest="is_sptree", action="store_true", help="Assumes no duplication nodes in the tree") parser.add_argument("-o", dest="output", type=str, help="Writes result into a file") parser.add_argument("--tax2name", dest="tax2name", type=str, help="") parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args(argv) if args.sp_delimiter: GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field] else: GET_TAXID = None reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print >> sys.stderr, "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print >> sys.stderr, "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print >> sys.stderr, "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)] if args.target_tree: target_trees += args.target_tree prev_tree = None if args.tax2name: tax2name = cPickle.load(open(args.tax2name)) else: tax2name = {} if args.tax2track: tax2track = cPickle.load(open(args.tax2track)) else: tax2track = {} print len(tax2track), len(tax2name) header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips") print >> OUT, '|'.join([h.ljust(15) for h in header]) if args.ref_tree: print >> sys.stderr, "Reading ref tree from", args.ref_tree reft = Tree(args.ref_tree, format=1) else: reft = None SHOW_TREE = False if args.show_tree or args.render: SHOW_TREE = True prev_broken = set() ENTRIES = [] ncbi.connect_database() for tfile in target_trees: #print tfile t = PhyloTree(tfile, sp_naming_function=None) if GET_TAXID: for n in t.iter_leaves(): n.name = GET_TAXID(n.name) if args.outgroup: if len(args.outgroup) == 1: out = t & args.outgroup[0] else: out = t.get_common_ancestor(args.outgroup) if set(out.get_leaf_names()) ^ set(args.outgroup): raise ValueError("Outgroup is not monophyletic") t.set_outgroup(out) t.ladderize() if prev_tree: tree_compare(t, prev_tree) prev_tree = t if args.tax_info: tax2name, tax2track = annotate_tree_with_taxa( t, args.tax_info, tax2name, tax2track) if args.dump_tax_info: cPickle.dump(tax2track, open("tax2track.pkl", "w")) cPickle.dump(tax2name, open("tax2name.pkl", "w")) print "Tax info written into pickle files" else: for n in t.iter_leaves(): spcode = n.name n.add_features(taxid=spcode) n.add_features(species=spcode) tax2name, tax2track = annotate_tree_with_taxa( t, None, tax2name, tax2track) # Split tree into species trees #subtrees = t.get_speciation_trees() if not args.rf_only: #print "Calculating tree subparts..." t1 = time.time() if not args.is_sptree: subtrees = t.split_by_dups() #print "Subparts:", len(subtrees), time.time()-t1 else: subtrees = [t] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees( t, subtrees, show_tree=SHOW_TREE) #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf else: subtrees = [] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0 ndups = 0 nsubtrees = len(subtrees) rf = 0 rf_max = 0 rf_std = 0 rf_med = 0 common_names = 0 max_size = 0 if reft and len(subtrees) == 1: rf = t.robinson_foulds(reft, attr_t1="realname") rf_max = rf[1] rf = rf[0] rf_med = rf elif reft: #print "Calculating avg RF..." nsubtrees, ndups, subtrees = t.get_speciation_trees( map_features=["taxid"]) #print len(subtrees), "Sub-Species-trees found" avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 print nsubtrees, "subtrees", ndups, "duplications" for ii, subt in enumerate(subtrees): print "\r%d" % ii, sys.stdout.flush() try: partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") except ValueError: pass else: sptree_size = len( set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append( (partial_rf[0] / float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) #print partial_rf[:2] rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names ] print >> OUT, '|'.join( map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" % fixed_string) if fixed else None OUT.write(" New broken: %s\n" % problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string ]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w")) print print HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades") print_table(ENTRIES, max_col_width=50, row_line=True, header=HEADER) if args.output: OUT.close()
f.border.width = 0 node.img_style["size"] = 10 node.img_style["shape"] = "square" node.img_style["bgcolor"] = random_color() node.img_style["hz_line_width"] = 0 node.img_style["vt_line_width"] = 0 #if node.is_leaf(): # f = faces.CircleFace(50, "red") # faces.add_face_to_node(f, node, 0, position="aligned") ts = TreeStyle() ts.mode = "c" ts.arc_span = 360 ts.layout_fn = layout ts.show_leaf_name = False ts.show_border = True ts.draw_guiding_lines = False ts.show_scale = True #ts.scale = 60 t = Tree() t.dist = 0 t.size = 0, 0 for x in xrange(100): n = t.add_child() n = n.add_child() n = n.add_child() n2 = n.add_child() n3 = n.add_child()
help="") parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args() reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)]
# Center text according to masterItem size tw = text.boundingRect().width() th = text.boundingRect().height() center = masterItem.boundingRect().center() text.setPos(center.x()-tw/2, center.y()-th/2) return masterItem def master_ly(node): if node.is_leaf(): # Create an ItemFAce. First argument must be the pointer to # the constructor function that returns a QGraphicsItem. It # will be used to draw the Face. Next arguments are arbitrary, # and they will be forwarded to the constructor Face function. F = faces.DynamicItemFace(ugly_name_face, 100, 50) faces.add_face_to_node(F, node, 0, position="aligned") t = Tree() t.populate(8, reuse_names=False) ts = TreeStyle() ts.layout_fn = master_ly ts.title.add_face(faces.TextFace("Drawing your own Qt Faces", fsize=15), 0) t.render("item_faces.png", h=400, tree_style=ts) # The interactive features are only available using the GUI t.show(tree_style=ts)
def draw(t, draw_alg=True): def ly(node): node.img_style['vt_line_width'] = 1 node.img_style['hz_line_width'] = 1 if node.is_leaf(): add_face_to_node(TextFace( ' (%s)' % node.name.split()[0].replace("/exon2", ""), fsize=10, fgcolor='slategrey', tight_text=False), node, 1, position='branch-right') add_face_to_node(TextFace(node.species, fsize=12, fgcolor='black', fstyle='italic', tight_text=False), node, 0, position='branch-right') c = 1 for tname in tracked_clades: if tname in node.named_lineage: linF = TextFace(tname, fsize=10, fgcolor='white') linF.margin_left = 3 linF.background.color = lin2color[tname] add_face_to_node(linF, node, c, position='aligned') c += 1 for n in xrange(1, 20 - (c - 1)): add_face_to_node(TextFace('', fsize=10, fgcolor='slategrey'), node, c, position='aligned') c += 1 if draw_alg and 'sequence' in node.features: #seqFace = SequenceFace(node.sequence,"aa",13) seqFace = SeqMotifFace(node.sequence, []) # [10, 100, "[]", None, 10, "black", "rgradient:blue", "arial|8|white|domain Name"], motifs = [] last_lt = None for c, lt in enumerate(node.sequence): if lt != '-': if last_lt is None: last_lt = c if c + 1 == len(node.sequence): start, end = last_lt, c w = end - start motifs.append([ start, end, "[]", w, 13, "slategrey", "slategrey", None ]) last_lt = None elif lt == '-': if last_lt is not None: start, end = last_lt, c - 1 w = end - start motifs.append([ start, end, "[]", w, 13, "slategrey", "slategrey", None ]) last_lt = None if not motifs: print node, node.sequence seqFace = SeqMotifFace(node.sequence, motifs, intermotif_format="line", seqtail_format="line", scale_factor=1) add_face_to_node(seqFace, node, 20, aligned=True) else: if node.up: add_face_to_node(TextFace('% 3g' % node.support, fsize=11, fgcolor='indianred'), node, 0, position='branch-top') if hasattr(node, "support2") and node.up: add_face_to_node(TextFace('% 3g' % float(node.support2), fsize=11, fgcolor='steelblue'), node, 0, position='branch-bottom') node.img_style['size'] = 0 node.img_style['hz_line_color'] = 'black' node.img_style['vt_line_color'] = 'black' colors = random_color(num=len(tracked_clades)) lin2color = dict([(ln, colors[i]) for i, ln in enumerate(tracked_clades)]) ts = TreeStyle() ts.draw_aligned_faces_as_table = False ts.draw_guiding_lines = False ts.show_leaf_name = False ts.show_branch_support = False ts.layout_fn = ly print 'Rendering tree.pdf' t.render('tree.svg', tree_style=ts) t.render('tree.png', tree_style=ts)
import sys from ete_dev import Tree, faces, TreeStyle, COLOR_SCHEMES sys.path.insert(0, "./") def layout(node): if node.is_leaf(): F= faces.PieChartFace([10,10,10,10,10,10,10,10,10,4,6], colors=COLOR_SCHEMES["set3"], width=100, height=100) F.border.width = None F.opacity = 0.8 faces.add_face_to_node(F,node, 0, position="branch-right") F.background.color = "indianred" x = faces.TextFace("hola") faces.add_face_to_node(x,node, 1, position="branch-right") x.background.color = "blue" else: F= faces.BarChartFace([40,20,70,100,30,40,50,40,70,12], min_value=0, colors=COLOR_SCHEMES["spectral"]) faces.add_face_to_node(F,node, 0, position="branch-top") t = Tree() ts = TreeStyle() ts.layout_fn = layout ts.mode = "r" ts.show_leaf_name = False t.populate(10) t.show(tree_style=ts)
if "improve" in node.features: color = "orange" if float(node.improve) < 0 else "green" if float(node.improve) == 0: color = "blue" support_face = faces.CircleFace(200, color) faces.add_face_to_node(support_face, node, 0, position="float-behind") try: from ete_dev import TreeStyle, NodeStyle, faces from ete_dev.treeview import random_color NPR_TREE_STYLE = TreeStyle() NPR_TREE_STYLE.layout_fn = npr_layout NPR_TREE_STYLE.show_leaf_name = False except ImportError: TreeStyle, NodeStyle, faces, random_color = [None] * 4 NPR_TREE_STYLE = None # CONVERT shell colors to the same curses palette COLORS = { "wr": "\033[1;37;41m", # white on red "wo": "\033[1;37;43m", # white on orange "wm": "\033[1;37;45m", # white on magenta "wb": "\033[1;37;46m", # white on blue "bw": "\033[1;37;40m", # black on white "lblue": "\033[1;34m", # light blue "lred": "\033[1;31m", # light red
TTG GGA CTG GAC GGC TAC AAG GCA GTA AGT CAG TAC GTT AAA GGT CGT GCG >Orangutan GAT GCA CGC TGG ATC AAC GAA AAG TTA AGA TGC GTA TCG AGA ACT CTG AAA AAA TTG GGA CTG GAC GGC TAC AAG GGA GTA AGT CAA TAC GTT AAA GGT CGT CCG """) #try: # tree.run_model("fb") # tree.run_model("M2") #except: # pass tree.dist = 0 ts = TreeStyle() ts.title.add_face(TextFace( "Example for EvolTree, interactivity shows codons", fsize=15), column=0) ts.layout_fn = test_layout_evol #try: # tree.show(tree_style=ts, histfaces=["M2"]) #except: tree.show(tree_style=ts) except: tree = PhyloTree('(Orangutan,Human,Chimp);') tree.link_to_alignment(""" >Chimp HARWLNEKLRCELRTLKKLGLDGYKAVSQYVKGRA >Orangutan DARWINEKLRCVSRTLKKLGLDGYKGVSQYVKGRP >Human DARWHNVKLRCELRTLKKLGLVGFKAVSQFVIRRA """) nt_sequences = {
def ncbi_consensus(self, ): nsubtrees, ndups, subtrees = self.get_speciation_trees(map_features=["taxid"]) valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE) avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 #reftree = for tn, subt in enumerate(subtrees): partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names] print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" %fixed_string) if fixed else None OUT.write(" New broken: %s\n" %problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w"))
col += 1 # Add the corresponding face to the node if name.startswith("Dme"): faces.add_face_to_node(flyFace, node, column=col) elif name.startswith("Dre"): faces.add_face_to_node(fishFace, node, column=col) elif name.startswith("Mms"): faces.add_face_to_node(mouseFace, node, column=col) elif name.startswith("Ptr"): faces.add_face_to_node(chimpFace, node, column=col) elif name.startswith("Hsa"): faces.add_face_to_node(humanFace, node, column=col) elif name.startswith("Cfa"): faces.add_face_to_node(dogFace, node, column=col) # Modifies this node's style node.img_style["size"] = 16 node.img_style["shape"] = "sphere" node.img_style["fgcolor"] = "#AA0000" # If leaf is "Hsa" (h**o sapiens), highlight it using a # different background. if node.is_leaf() and node.name.startswith("Hsa"): node.img_style["bgcolor"] = "#9db0cf" # And, finally, Visualize the tree using my own layout function ts = TreeStyle() ts.layout_fn = mylayout t.render("img_faces.png", w=600, tree_style = ts)
def ncbi_consensus(self, ): nsubtrees, ndups, subtrees = self.get_speciation_trees( map_features=["taxid"]) valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees( t, subtrees, show_tree=SHOW_TREE) avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 #reftree = for tn, subt in enumerate(subtrees): partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0] / float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names ] print >> OUT, '|'.join( map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" % fixed_string) if fixed else None OUT.write(" New broken: %s\n" % problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string ]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w"))