示例#1
0
def test_unify_Op():
    # These `Op`s expand into `ExpressionTuple`s
    op1 = CustomOp(1)
    op2 = CustomOp(1)

    # `Op`, `Op`
    s = unify(op1, op2)
    assert s == {}

    # `ExpressionTuple`, `Op`
    s = unify(etuplize(op1), op2)
    assert s == {}

    # These `Op`s don't expand into `ExpressionTuple`s
    op1_np = CustomOpNoProps(1)
    op2_np = CustomOpNoProps(1)

    s = unify(op1_np, op2_np)
    assert s == {}

    # Same, but this one also doesn't implement `__eq__`
    op1_np_neq = CustomOpNoPropsNoEq(1)

    s = unify(op1_np_neq, etuplize(op1))
    assert s is False
示例#2
0
def _unify_Variable_Variable(u, v, s):
    # Avoid converting to `etuple`s, when possible
    if u == v:
        yield s
        return

    if not u.owner and not v.owner:
        yield False
        return

    yield _unify(
        etuplize(u, shallow=True) if u.owner else u,
        etuplize(v, shallow=True) if v.owner else v,
        s,
    )
示例#3
0
def _unify_Variable_ExpressionTuple(u, v, s):
    # `Constant`s are "atomic"
    if not u.owner:
        yield False
        return

    yield _unify(etuplize(u, shallow=True), v, s)
示例#4
0
def _unify_etuplize_first_arg(u, v, s):
    try:
        u_et = etuplize(u, shallow=True)
        yield _unify(u_et, v, s)
    except TypeError:
        yield False
        return
示例#5
0
def test_etuples():
    x_at = at.vector("x")
    y_at = at.vector("y")

    z_at = etuple(x_at, y_at)

    res = apply(at.add, z_at)

    assert res.owner.op == at.add
    assert res.owner.inputs == [x_at, y_at]

    w_at = etuple(at.add, x_at, y_at)

    res = w_at.evaled_obj
    assert res.owner.op == at.add
    assert res.owner.inputs == [x_at, y_at]

    # This `Op` doesn't expand into an `etuple` (i.e. it's "atomic")
    op1_np = CustomOpNoProps(1)

    res = apply(op1_np, z_at)
    assert res.owner.op == op1_np

    q_at = op1_np(x_at, y_at)
    res = etuplize(q_at)
    assert res[0] == op1_np

    with pytest.raises(TypeError):
        etuplize(op1_np)

    class MyMultiOutOp(Op):
        def make_node(self, *inputs):
            outputs = [MyType()(), MyType()()]
            return Apply(self, list(inputs), outputs)

        def perform(self, node, inputs, outputs):
            outputs[0] = np.array(inputs[0])
            outputs[1] = np.array(inputs[0])

    x_at = at.vector("x")
    op1_np = MyMultiOutOp()
    res = apply(op1_np, etuple(x_at))
    assert len(res) == 2
    assert res[0].owner.op == op1_np
    assert res[1].owner.op == op1_np
示例#6
0
def test_sexp_unify_reify():
    """Make sure we can unify and reify etuples/S-exps."""
    # Unify `A . (x + y)`, for `x`, `y` logic variables
    A = tf.compat.v1.placeholder(tf.float64,
                                 name="A",
                                 shape=tf.TensorShape([None, None]))
    x = tf.compat.v1.placeholder(tf.float64,
                                 name="x",
                                 shape=tf.TensorShape([None, 1]))
    y = tf.compat.v1.placeholder(tf.float64,
                                 name="y",
                                 shape=tf.TensorShape([None, 1]))

    z = tf.matmul(A, tf.add(x, y))

    z_sexp = etuplize(z, shallow=False)

    # Let's just be sure that the original TF objects are preserved
    assert z_sexp[1].reify() == A
    assert z_sexp[2][1].reify() == x
    assert z_sexp[2][2].reify() == y

    A_lv, x_lv, y_lv = var(), var(), var()
    dis_pat = etuple(
        TFlowMetaOperator(mt.matmul.op_def, var()),
        A_lv,
        etuple(TFlowMetaOperator(mt.add.op_def, var()), x_lv, y_lv),
    )

    s = unify(dis_pat, z_sexp, {})

    assert s[A_lv] == mt(A)
    assert s[x_lv] == mt(x)
    assert s[y_lv] == mt(y)

    # Now, we construct a graph that reflects the distributive property and
    # reify with the substitutions from the un-distributed form
    out_pat = etuple(mt.add, etuple(mt.matmul, A_lv, x_lv),
                     etuple(mt.matmul, A_lv, y_lv))
    z_dist = reify(out_pat, s)

    # Evaluate the tuple-expression and get a meta object/graph
    z_dist_mt = z_dist.eval_obj

    # If all the logic variables were reified, we should be able to
    # further reify the meta graph and get a concrete TF graph
    z_dist_tf = z_dist_mt.reify()

    assert isinstance(z_dist_tf, tf.Tensor)

    # Check the first part of `A . x + A . y` (i.e. `A . x`)
    assert z_dist_tf.op.inputs[0].op.inputs[0] == A
    assert z_dist_tf.op.inputs[0].op.inputs[1] == x
    # Now, the second, `A . y`
    assert z_dist_tf.op.inputs[1].op.inputs[0] == A
    assert z_dist_tf.op.inputs[1].op.inputs[1] == y
示例#7
0
 def distributes(in_lv, out_lv):
     return lall(
         # lhs == A * (x + b)
         eq(etuple(mt.dot, var("A"), etuple(mt.add, var("x"), var("b"))),
            etuplize(in_lv)),
         # rhs == A * x + A * b
         eq(
             etuple(mt.add, etuple(mt.dot, var("A"), var("x")),
                    etuple(mt.dot, var("A"), var("b"))),
             out_lv,
         ),
     )
示例#8
0
    lambda u, v, s: unify_MetaSymbol(u, metatize(v), s),
)
_unify.add(
    (tf_class_abstractions, TFlowMetaSymbol, Mapping),
    lambda u, v, s: unify_MetaSymbol(metatize(u), v, s),
)
_unify.add(
    (tf_class_abstractions, tf_class_abstractions, Mapping),
    lambda u, v, s: unify_MetaSymbol(metatize(u), metatize(v), s),
)


def _reify_TFlowClasses(o, s):
    meta_obj = metatize(o)
    return reify(meta_obj, s)


_reify.add((tf_class_abstractions, Mapping), _reify_TFlowClasses)


_car.add((tf.Tensor,), lambda x: operator(metatize(x)))
operator.add((tf.Tensor,), lambda x: operator(metatize(x)))

_cdr.add((tf.Tensor,), lambda x: arguments(metatize(x)))
arguments.add((tf.Tensor,), lambda x: arguments(metatize(x)))

etuplize.add(tf_class_abstractions, lambda x, shallow=False: etuplize(metatize(x), shallow))


__all__ = []
示例#9
0
def test_normal_normal_regression():
    tt.config.compute_test_value = "ignore"
    theano.config.cxx = ""
    np.random.seed(9283)

    N = 10
    M = 3
    a_tt = tt.vector("a")
    R_tt = tt.vector("R")
    X_tt = tt.matrix("X")
    V_tt = tt.vector("V")

    a_tt.tag.test_value = np.random.normal(size=M)
    R_tt.tag.test_value = np.abs(np.random.normal(size=M))
    X = np.random.normal(10, 1, size=N)
    X = np.c_[np.ones(10), X, X * X]
    X_tt.tag.test_value = X
    V_tt.tag.test_value = np.ones(N)

    beta_rv = NormalRV(a_tt, R_tt, name="\\beta")

    E_y_rv = X_tt.dot(beta_rv)
    E_y_rv.name = "E_y"
    Y_rv = NormalRV(E_y_rv, V_tt, name="Y")

    y_tt = tt.as_tensor_variable(Y_rv.tag.test_value)
    y_tt.name = "y"
    y_obs_rv = observed(y_tt, Y_rv)
    y_obs_rv.name = "y_obs"

    #
    # Use the relation with identify/match `Y`, `X` and `beta`.
    #
    y_args_tail_lv, b_args_tail_lv = var(), var()
    beta_lv = var()

    y_args_lv, y_lv, Y_lv, X_lv = var(), var(), var(), var()
    (res, ) = run(
        1,
        (beta_lv, y_args_tail_lv, b_args_tail_lv),
        applyo(mt.observed, y_args_lv, y_obs_rv),
        eq(y_args_lv, (y_lv, Y_lv)),
        normal_normal_regression(Y_lv, X_lv, beta_lv, y_args_tail_lv,
                                 b_args_tail_lv),
    )

    # TODO FIXME: This would work if non-op parameters (e.g. names) were covered by
    # `operator`/`car`.  See `TheanoMetaOperator`.
    assert res[0].eval_obj.obj == beta_rv
    assert res[0] == etuplize(beta_rv)
    assert res[1] == etuplize(Y_rv)[2:]
    assert res[2] == etuplize(beta_rv)[1:]

    #
    # Use the relation with to produce `Y` from given `X` and `beta`.
    #
    X_new_mt = mt(tt.eye(N, M))
    beta_new_mt = mt(NormalRV(0, 1, size=M))
    Y_args_cdr_mt = etuplize(Y_rv)[2:]
    Y_lv = var()
    (res, ) = run(
        1, Y_lv,
        normal_normal_regression(Y_lv, X_new_mt, beta_new_mt, Y_args_cdr_mt))
    Y_out_mt = res.eval_obj

    Y_new_mt = etuple(mt.NormalRV, mt.dot(X_new_mt,
                                          beta_new_mt)) + Y_args_cdr_mt
    Y_new_mt = Y_new_mt.eval_obj

    assert Y_out_mt == Y_new_mt
示例#10
0
)
_unify.add(
    (tt_class_abstractions, TheanoMetaSymbol, Mapping),
    lambda u, v, s: unify_MetaSymbol(metatize(u), v, s),
)
_unify.add(
    (tt_class_abstractions, tt_class_abstractions, Mapping),
    lambda u, v, s: unify_MetaSymbol(metatize(u), metatize(v), s),
)


def _reify_TheanoClasses(o, s):
    meta_obj = metatize(o)
    return reify(meta_obj, s)


_reify.add((tt_class_abstractions, Mapping), _reify_TheanoClasses)

operator.add((tt.Variable, ), lambda x: operator(metatize(x)))
_car.add((tt.Variable, ), lambda x: operator(metatize(x)))

arguments.add((tt.Variable, ), lambda x: arguments(metatize(x)))
_cdr.add((tt.Variable, ), lambda x: arguments(metatize(x)))

term.add((tt.Op, ExpressionTuple), lambda op, args: term(metatize(op), args))

etuplize.add(tt_class_abstractions,
             lambda x, shallow=False: etuplize(metatize(x), shallow))

__all__ = []
示例#11
0
def normal_qr_transform(in_expr, out_expr):
    """Produce a relation for normal-normal regression and its QR-reduced form.

    TODO XXX: This isn't entirely correct (e.g. it needs to also
    transform the variance terms), but it demonstrates all the requisite
    functionality for this kind of model reformulation.

    """
    y_lv, Y_lv, X_lv, beta_lv = var(), var(), var(), var()
    Y_args_lv, beta_args_lv = var(), var()
    QR_lv, Q_lv, R_lv = var(), var(), var()
    beta_til_lv, beta_new_lv = var(), var()
    beta_mean_lv, beta_sd_lv = var(), var()
    beta_size_lv, beta_rng_lv = var(), var()
    Y_new_lv = var()
    X_op_lv = var()

    in_expr = etuplize(in_expr)

    res = lall(
        # Only applies to regression models on observed RVs
        eq(in_expr, etuple(mt.observed, y_lv, Y_lv)),
        # Relate the model components
        normal_normal_regression(Y_lv, X_lv, beta_lv, Y_args_lv, beta_args_lv),
        # Let's not do all this to an already QR-reduce graph;
        # otherwise, we'll loop forever!
        applyo(X_op_lv, var(), X_lv),
        # XXX: This type of dis-equality goal isn't the best,
        # but it will definitely work for now.
        neq(mt.nlinalg.qr_full, X_op_lv),
        # Relate terms for the QR decomposition
        eq(QR_lv, etuple(mt.nlinalg.qr_full, X_lv)),
        eq(Q_lv, etuple(itemgetter(0), QR_lv)),
        eq(R_lv, etuple(itemgetter(1), QR_lv)),
        # The new `beta_tilde`
        eq(beta_args_lv, (beta_mean_lv, beta_sd_lv, beta_size_lv, beta_rng_lv)),
        eq(
            beta_til_lv,
            etuple(
                mt.NormalRV,
                # Use these `tt.[ones|zeros]_like` functions to preserve the
                # correct shape (and a valid `tt.dot`).
                etuple(mt.zeros_like, beta_mean_lv),
                etuple(mt.ones_like, beta_sd_lv),
                beta_size_lv,
                beta_rng_lv,
            ),
        ),
        # Relate the new and old coeffs
        eq(beta_new_lv, etuple(mt.dot, etuple(mt.nlinalg.matrix_inverse, R_lv), beta_til_lv)),
        # Use the relation the other way to produce the new/transformed
        # observation distribution
        normal_normal_regression(Y_new_lv, Q_lv, beta_til_lv, Y_args_lv),
        eq(
            out_expr,
            [
                (
                    in_expr,
                    etuple(mt.observed, y_lv, etuple(update_name_suffix, Y_new_lv, Y_lv, "")),
                ),
                (beta_lv, beta_new_lv),
            ],
        ),
    )
    return res
示例#12
0
def test_etuple_term():

    assert etuplize("blah", return_bad_args=True) == "blah"

    a = tf.compat.v1.placeholder(tf.float64, name="a")
    b = tf.compat.v1.placeholder(tf.float64, name="b")

    a_mt = mt(a)
    a_mt._obj = None
    a_reified = a_mt.reify()
    assert isinstance(a_reified, tf.Tensor)
    assert a_reified.shape.dims is None

    with pytest.raises(TypeError):
        etuplize(a_mt.op.op_def)

    with pytest.raises(TypeError):
        etuplize(a_mt.op.node_def, shallow=False)

    with pytest.raises(TypeError):
        etuplize(a_mt, shallow=False)

    # Now, consider a meta graph with operator arguments
    add_mt = mt.AddV2(a, b)
    add_et = etuplize(add_mt, shallow=True)
    assert isinstance(add_et, ExpressionTuple)
    assert add_et[0].op_def == mt.AddV2.op_def

    # Check `kanren`'s term framework
    assert isinstance(operator(add_mt), TFlowMetaOperator)
    assert arguments(add_mt) == add_mt.op.inputs

    assert operator(add_mt)(*arguments(add_mt)) == add_mt

    assert isinstance(add_et[0], TFlowMetaOperator)
    assert add_et[1:] == add_mt.op.inputs
    assert operator(add_mt)(*arguments(add_mt)) == add_mt

    assert term(operator(add_mt), arguments(add_mt)) == add_mt

    add_mt = mt.AddV2(a, add_mt)
    add_et = etuplize(add_mt, shallow=False)

    assert isinstance(add_et, ExpressionTuple)
    assert len(add_et) == 3
    assert add_et[0].op_def == mt.AddV2.op_def
    assert len(add_et[2]) == 3
    assert add_et[2][0].op_def == mt.AddV2.op_def
    assert add_et.eval_obj is add_mt

    add_et._eval_obj = ExpressionTuple.null
    with tf.Graph().as_default():
        assert add_et.eval_obj == add_mt

    # Make sure things work with logic variables
    add_lvar_mt = TFlowMetaTensor(var(), var(), [1, 2])

    with pytest.raises(ConsError):
        assert operator(add_lvar_mt) is None

    with pytest.raises(ConsError):
        assert arguments(add_lvar_mt) is None
示例#13
0
def test_etuple_term():
    """Test `etuplize` and `etuple` interaction with `term`."""
    # Take apart an already constructed/evaluated meta
    # object.
    e2 = mt.add(mt.vector(), mt.vector())

    e2_et = etuplize(e2)

    assert isinstance(e2_et, ExpressionTuple)

    # e2_et_expect = etuple(
    #     mt.add,
    #     etuple(mt.TensorVariable,
    #            etuple(mt.TensorType,
    #                   'float64', (False,), None),
    #            None, None, None),
    #     etuple(mt.TensorVariable,
    #            etuple(mt.TensorType,
    #                   'float64', (False,), None),
    #            None, None, None),
    # )
    e2_et_expect = etuple(mt.add, e2.base_arguments[0], e2.base_arguments[1])
    assert e2_et == e2_et_expect
    assert e2_et.eval_obj is e2

    # Make sure expression expansion works from Theano objects, too.
    # First, do it manually.
    tt_expr = tt.vector() + tt.vector()

    mt_expr = mt(tt_expr)
    assert mt_expr.obj is tt_expr
    assert mt_expr.reify() is tt_expr
    e3 = etuplize(mt_expr)
    assert e3 == e2_et
    assert e3.eval_obj is mt_expr
    assert e3.eval_obj.reify() is tt_expr

    # Now, through `etuplize`
    e2_et_2 = etuplize(tt_expr)
    assert e2_et_2 == e3 == e2_et
    assert isinstance(e2_et_2, ExpressionTuple)
    assert e2_et_2.eval_obj == tt_expr

    test_expr = mt(tt.vector("z") * 7)
    assert rator(test_expr) == mt.mul
    assert rands(test_expr)[0] == mt(tt.vector("z"))

    dim_shuffle_op = rator(rands(test_expr)[1])

    assert isinstance(dim_shuffle_op, mt.DimShuffle)
    assert rands(rands(test_expr)[1]) == etuple(mt(7))

    with pytest.raises(ConsError):
        rator(dim_shuffle_op)
    # assert rator(dim_shuffle_op) == mt.DimShuffle
    # assert rands(dim_shuffle_op) == etuple((), ("x",), True)

    const_tensor = rands(rands(test_expr)[1])[0]
    with pytest.raises(ConsError):
        rator(const_tensor)
    with pytest.raises(ConsError):
        rands(const_tensor)

    et_expr = etuplize(test_expr)
    exp_res = etuple(mt.mul, mt(tt.vector("z")),
                     etuple(mt.DimShuffle((), ("x", ), True), mt(7))
                     # etuple(etuple(mt.DimShuffle, (), ("x",), True), mt(7))
                     )

    assert et_expr == exp_res
    assert exp_res.eval_obj == test_expr