def is_curious(n): return sum([factorial(x) for x in get_digits(n)]) == n
def is_npower_number(i, n=4): """Return True if sum of `n`th power of digits in `i` equates `i`""" assert i > 1 return i == sum(a**n for a in get_digits(i))
def truncatable_from_left(n): d = get_digits(n, integer=False) m = [is_prime(int("".join(d[i:]))) for i in range(len(d))] return reduce(lambda x, y: x and y, m)
def truncatable_form_right(n): d = get_digits(n, integer=False) m = [is_prime(int("".join(d[:i]))) for i in range(1, len(d))] + [is_prime(n)] return reduce(lambda x, y: x and y, m)
#!/usr/bin/python # coding: UTF-8 """ @author: CaiKnife Powerful digit sum Problem 56 A googol (10100) is a massive number: one followed by one-hundred zeros; 100100 is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1. Considering natural numbers of the form, ab, where a, b 100, what is the maximum digital sum? """ from euler import get_digits m = 0 for a in xrange(1, 100): for b in xrange(1, 100): digit_sum = sum(get_digits(a ** b)) if m < digit_sum: m = digit_sum print m