示例#1
0
def ans(upper_bound, nums):
    result = 0
    for i in range(1, len(nums) + 1):
        for each in combinations(nums, i):
            if i % 2:
                result += sum_divisble_by(product(each), upper_bound - 1)
            else:
                result -= sum_divisble_by(product(each), upper_bound - 1)
    return result
示例#2
0
def ans(upper_bound, nums):
    result = 0
    for i in range(1, len(nums)+1):
        for each in combinations(nums, i):
            if i % 2:
                result += sum_divisble_by(product(each), upper_bound-1)
            else:
                result -= sum_divisble_by(product(each), upper_bound-1)
    return result
示例#3
0
def solution():
    products = []
    for i, row in enumerate(grid):
        for j, num in enumerate(row):
            if (j + ADJ) <= width:
                numbers = row[j:j + ADJ]
                products.append(euler.product(numbers))
                if (i + ADJ) <= height:
                    products.append(euler.product(adjacent(i, j, 1, 1)))

            if (i + ADJ) <= height:
                products.append(euler.product(adjacent(i, j, 1, 0)))
                if (j - ADJ) >= -1:
                    products.append(euler.product(adjacent(i, j, 1, -1)))
    return max(products)
示例#4
0
def main():
    lst = [
        [int(item) for item in line.split()]
        for line in open('../txt/problem011.txt')
    ]
    length = len(lst)
    maximum = 0
    for i in range(length - NUMBERS + 1):
        for j in range(length - NUMBERS + 1):
            for start_i, start_j, d_i, d_j in [
                    (0, 0, 0, 1),
                    (0, 0, 1, 0),
                    (0, 0, 1, 1),
                    (NUMBERS - 1, 0, -1, 1)
            ]:
                maximum = max(
                    maximum,
                    euler.product(
                        (
                            lst[i + start_i + d_i * n][j + start_j + d_j * n]
                            for n in range(NUMBERS)
                        )
                    )
                )
    return maximum
示例#5
0
def chinese_remainder(divisors, remainders):
    result = 0
    product = euler.product(divisors)
    for divisor, remainder in zip(divisors, remainders):
        product_i = product // divisor
        result += remainder * mul_inv(product_i, divisor) * product_i
    return result % product
示例#6
0
文件: e118.py 项目: drsam94/PELC
def count_sets(permut, prev):
    global count
    if not permut:
        prod = product(prev)
        if prod not in uniq_prods:
            uniq_prods.add(prod)
            count += 1

    for end in range(len(permut)):
        candidate = get_num(permut, end)
        if isPrime(candidate):
            count_sets(permut[end+1:], prev + [candidate])
示例#7
0
def main():
    prime_list = euler.prime_list(100)
    total = 0
    for combination in itertools.combinations(prime_list, 4):
        maximum = combination[-1]
        lst = [
            prime
            for prime in prime_list
            if prime < maximum and prime not in combination
        ]
        product = euler.product(combination)
        total += euler.is_not_divisible(LIMIT // product, lst, len(lst))
    return total
示例#8
0
文件: e110.py 项目: drsam94/PELC
def getans(asl, minans):
    global minanslen
    candidate = product(p**a for p, a in zip(ps, asl))
    if candidate >= minans:
        return minans
    prod = product(2*a + 1 for a in asl)
    if prod > 2*THRESH:
        print((candidate, asl, product(2*a + 1 for a in asl)))
        minans = candidate
        minanslen = len(asl)
    if all(a == 1 for a in asl):
        minans = getans(asl + [1], minans)
    for j in range(len(asl)):
        ascpy = asl[:]
        ascpy[j] += 1
        if j > 0 and ascpy[j] > ascpy[j - 1]:
            continue
        if ascpy[j] > 10:
            break
        minans = getans(ascpy, minans)
        if len(asl) < minanslen - 2:
            return minans
    return minans
def largest_product_in_a_grid(grid, chunk_len):
    """
    finds the largest consecutive product in a grid (horiz, vert, diag)

    grid (list): 2d list or array representing grid dimensions and values
    chunk_len (int): length of consecutive numbers to check
    returns (int): solution
    """
    stub = Stub()
    #stub.start()

    grid_rows = len(grid)
    grid_cols = len(grid[0])

    largest = 0

    # check N-S, W-E, NW-SE products
    for i in range(grid_rows - chunk_len):
        for j in range(grid_cols - chunk_len):
            n_s = [grid[i+n][j] for n in range(chunk_len)]
            w_e = grid[i][j:j+chunk_len]
            nw_se = [grid[i+n][j+n] for n in range(chunk_len)]

            for chunk in [n_s, w_e, nw_se]:
                if product(chunk) > largest:
                    stub.msg(chunk)
                    largest = product(chunk)

    # check SW-NE products
    for i in range(chunk_len-1, grid_rows):
        for j in range(grid_cols - chunk_len):
            sw_ne = [grid[i-n][j+n] for n in range(chunk_len)]
            if product(sw_ne) > largest:
                stub.msg(sw_ne)
                largest = product(sw_ne)
    return largest
示例#10
0
文件: e171.py 项目: drsam94/PELC
def numPermutsViable(xs, permut):
    ys = xs[:]
    for x in permut:
        if x != 0:
            ys.remove(x)
    if not ys:
        return 1
    permuts = 0
    for leadingZeroes in range(0, 12 - len(ys)):
        for y in set(ys):
            zs = ys[:]
            zs.remove(y)
            equivs = [zs.count(z) for z in zs] + [11 - leadingZeroes - len(ys)]
            permuts += fac(10 - leadingZeroes) // product([fac(e) for e in equivs])

    return permuts
def special_pythagorean_triplet():
    """
    finds the special pythagorean triplet that also sums to 1000

    returns (int): product of triplet
    """
    stub = Stub()
    # stub.start()

    # generate power set of numbers that sum to 1000
    counter = 0
    for triplet in gen_triplets_that_sum_to(1000):
        if is_pythagorean(*triplet):
            stub.msg(triplet, counter)
            return product(triplet)
        counter += 1

    raise ValueError("unable to find special pythagorean triplet after " + str(counter) + " trials.")
def largest_product_in_a_series(series, length):
    """
    finds the largest product of a subseries in a series

    series (str): numeric series
    length (int): length of subseries to check products of
    returns (int): solution
    """
    # reassign 'series' as a list of integers
    series = [int(char) for char in series]

    # loop through 'series' in size 'length' chunks and compare w/ 'largest'
    largest = None
    for i in range(len(series)-length):
        calc_product = product(series[i:i+length])
        if calc_product > largest:
            largest = calc_product

    return largest
示例#13
0
def main():
    arrays = {(2, 2)}
    d = {k: k * 2 for k in range(2, LIMIT + 1)}
    while arrays:
        new_arrays = set()
        for lst in arrays:
            product = euler.product(lst)
            k = product - sum(lst) + len(lst)
            if k > LIMIT:
                continue
            if d[k] > product:
                d[k] = product
            new_arrays.add((lst[0] + 1, ) + lst[1:])
            for i in range(1, len(lst)):
                if lst[i - 1] > lst[i]:
                    new_arrays.add(lst[:i] + (lst[i] + 1, ) + lst[i + 1:])
            new_arrays.add(lst + (2, ))
        arrays = new_arrays
    return sum(set(d.values()))
示例#14
0
def euler8():
    number = """731671765313306249192251196744265747
4235534919493496983520312774506326239578318016
9848018694788518438586156078911294949545950173
7958331952853208805511125406987471585238630507
1569329096329522744304355766896648950445244523
1617318564030987111217223831136222989342338030
8135336276614282806444486645238749303589072962
9049156044077239071381051585930796086670172427
1218839987979087922749219016997208880937766572
7333001053367881220235421809751254540594752243
5258490771167055601360483958644670632441572215
5397536978179778461740649551492908625693219784
6862248283972241375657056057490261407972968652
4145351004748216637048440319989000889524345065
8541227588666881164271714799244429282308634656
7481391912316282458617866458359124566529476545
6828489128831426076900422421902267105562632111
1109370544217506941658960408071984038509624554
4436298123098787992724428490918884580156166097
9191338754992005240636899125607176060588611646
7109405077541002256983155200055935729725716362
69561882670428252483600823257530420752963450""".replace('\n', '')
    print(max(product(number[i:i+13]) for i in range(1000-13)))
示例#15
0
import euler

def divisor_permutations(n, largest):
    if n == 1:
        yield []
    divisors = euler.divisors(n)
    divisors = [ d for d in divisors if d > 1 and d <= largest]
    for d in divisors:
        for rest in divisor_permutations(n/d, d):
            yield [d] + rest

solns = {}
for i in xrange(15000):
    for divs in divisor_permutations(i, i):
        # pad the sequence to the correct length
        act = divs + ([1] * (euler.product(divs) - sum(divs)))
        if len(divs) > 1:
            if len(act) not in solns or solns[len(act)] > i:
                solns[len(act)] = i
vals = set()
for k in xrange(2,12000):
    vals.add(solns[k])
print vals
print 'total', sum(vals)

示例#16
0
# Also note that the denominator must be more than the numerator

from euler import digits, product
from math import gcd

# Find the numerators and denominators of the fractions that satisfy this
fracs = set()
for num in range(10, 100):
    num_digs = digits(num)
    for den in range(num + 1, 100):
        den_digs = digits(den)

        # Skip the 'trivial' cases
        if num_digs[0] == 0 and den_digs[0] == 0:
            continue

        # If we have matching digits
        if num_digs[0] == den_digs[1]:
            if (num * den_digs[0] == den * num_digs[1]):
                fracs.add((num_digs[1], den_digs[0]))
        if num_digs[1] == den_digs[0]:
            if (num * den_digs[1] == den * num_digs[0]):
                fracs.add((num_digs[0], den_digs[1]))


# Once we've got the fractions, we need to find the product and get its reduced denominator
# We first find the lcm of the fraction denominators
prod_num = product(x[0] for x in fracs)
prod_den = product(x[1] for x in fracs)
g = gcd(prod_num, prod_den)
print(prod_den // g)
示例#17
0
文件: 20.py 项目: higgsd/euler
# 648
import euler

N = 100
print sum([int(c) for c in str(euler.product(xrange(1, N + 1)))])
示例#18
0
from euler import product
from itertools import count

def end_l(lim):
  end_l = [0]
  pos, nd = 0, 0
  while pos <= lim:
    pos += (10**nd * 9) * (nd+1)
    nd += 1
    end_l.append(pos)
  return end_l

def get_digit(pos, end_l):
  for nd in count(1):
    end_p = end_l[nd]
    if pos <= end_p:
       break

  pos -= end_l[nd-1] + 1
  n_pos = pos/nd

  n = n_pos + 10**(nd-1)
  dig_pos = pos - n_pos*nd

  return int(str(n)[dig_pos])

l = end_l(1000000)
print product(get_digit(10**p, l) for p in xrange(7))

示例#19
0
def main():
    return max(
        euler.product((int(digit) for digit in NUMBER[i:i + 13]))
        for i in range(len(NUMBER) - 13 + 1))
示例#20
0
文件: e493.py 项目: drsam94/PELC
from decimal import Decimal
from euler import choose,product

ways = [Decimal(0) for _ in range(0,8)]
for r in range(0,11):
 for o in range(0,min(11, 21-r)):
  for y in range(0,min(11,21-r-o)):
   for g in range(0,min(11,21-r-o-y)):
    for b in range(0,min(11,21-r-o-y-g)):
     for i in range(0,min(11,21-r-o-y-g-b)):
      v = 20 - sum([r,o,y,g,b,i])
      roygbiv = [r,o,y,g,b,i,v]
      count = sum(1 for x in roygbiv if x > 0)
      different_ways = product(choose(10,x) for x in roygbiv)
      ways[count] += Decimal(different_ways)

tot_ways = sum(ways)
EV = sum(Decimal(x) * (ways[x] / tot_ways)  for x in range(2,8))
print(EV)
示例#21
0
from euler import product

s = '.' + ''.join((str(x) for x in range(1, 10**6)))
print product(int(s[10**d]) for d in range(7))
示例#22
0
min_north_row = prod_size - 1
max_south_row = n_rows - prod_size
min_west_col = prod_size - 1
max_east_col = n_cols - prod_size
for row in range(n_rows):
    for col in range(n_cols):

        # Southeast
        if row <= max_south_row and col <= max_east_col:
            indices += [[(row + i, col + i) for i in range(prod_size)]]

        # Northwest
        if row >= min_north_row and col >= min_west_col:
            indices += [[(row - i, col - i) for i in range(prod_size)]]

        # Southwest
        if row <= max_south_row and col >= min_west_col:
            indices += [[(row + i, col - i) for i in range(prod_size)]]

        # Northeast
        if row >= min_north_row and col <= max_east_col:
            indices += [[(row - i, col + i) for i in range(prod_size)]]

# We've now got all of the indices to check
# So now we can find the max product
for index_set in indices:
    prod = product([grid[r][c] for (r,c) in index_set])
    if prod > max_prod:
        max_prod = prod

print(max_prod)
示例#23
0
from euler import product

s   = '.' + ''.join((str(x) for x in range(1,10**6)))
print product(int(s[10**d]) for d in range(7))
示例#24
0
文件: 24.py 项目: higgsd/euler
# 2783915460
import euler
N = 10
T = 1000000
f = euler.product(xrange(1, N))
v = T - 1
a = []
d = [n for n in xrange(N)]
for n in xrange(N):
    x = v / f
    v %= f
    a.append(d[x])
    del d[x]
    if n + 1 != N:
        f /= N - n - 1
print ''.join([str(x) for x in a])
示例#25
0
def main():
    string = ''.join(str(i) for i in range(0, 250000))
    return euler.product(int(string[10**i]) for i in range(7))
示例#26
0
文件: 41.py 项目: higgsd/euler
# 7652413
import euler
N = 7
m = 0
d = '123456789'
for i in xrange(euler.product(xrange(1, N + 1))):
    v = []
    dd = list(d)
    for j in xrange(N):
        v.append(dd.pop(i % (N - j)))
        i /= (N - j)
    vv = int(''.join(v))
    if euler.is_prime(vv) and vv > m:
        m = vv
print m
示例#27
0
文件: 34.py 项目: higgsd/euler
# 40730
import euler
f = [1]
f += [euler.product(range(1, i + 1)) for i in range(1, 10)]
s = 0
for n in xrange(11, 7 * f[9]):
    if n == sum([f[int(c)] for c in str(n)]):
        s += n
print s
示例#28
0
文件: 8.py 项目: higgsd/euler
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
"""
s = ''.join(s.split())

m = 0
for n in xrange(len(s) - 4):
    val = s[n:n+5]
    x = euler.product([int(c) for c in val])
    if x > m:
        m = x
print m
示例#29
0
import euler


def divisor_permutations(n, largest):
    if n == 1:
        yield []
    divisors = euler.divisors(n)
    divisors = [d for d in divisors if d > 1 and d <= largest]
    for d in divisors:
        for rest in divisor_permutations(n / d, d):
            yield [d] + rest


solns = {}
for i in xrange(15000):
    for divs in divisor_permutations(i, i):
        # pad the sequence to the correct length
        act = divs + ([1] * (euler.product(divs) - sum(divs)))
        if len(divs) > 1:
            if len(act) not in solns or solns[len(act)] > i:
                solns[len(act)] = i
vals = set()
for k in xrange(2, 12000):
    vals.add(solns[k])
print vals
print 'total', sum(vals)
示例#30
0
# for more information about this problem, check
# http://mathschallenge.net/index.php?section=faq&ref=number/number_of_divisors
#
# According to Fundamental Theorem of Arithmetic (or Unique Prime-Factorization 
# theorem) <http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic>,
# n can be uniquely represented by a^x * b^y * c^z, where a, b, c are primes
# let d(n) = the number of divisors of n
# then d(n) = (x+1) * (y+1) * (z+1)

from euler import uniprimefact, product
from itertools import count


def trinum(n):
    ''' Return the n-th triangle number '''
    return n*(n+1)/2

def trinumgen():
    ''' Generate the sequence of triangle numbers '''
    for n in count(1):
        yield trinum(n)

for trin in trinumgen():
    if product(each + 1 for each in uniprimefact(trin).values()) > 500:
        print trin
        break
示例#31
0
文件: 53.py 项目: higgsd/euler
# 4075
import euler

N = 1000000
M = 100

s = 0
f = [1]
f += [euler.product(xrange(1,n+1)) for n in xrange(1, M+1)]
for n in xrange(1,M+1):
    for r in xrange(n+1):
        if f[n] / f[r] / f[n-r] > N:
            s += 1
print s
示例#32
0
def rad(n):
    return euler.product(euler.primeFactors(n))
示例#33
0
文件: e286.py 项目: drsam94/PELC
def Pr(q, n, k):
    C = cmath.exp(complex(0,2*cmath.pi/(n + 1)))
    return 1/(n+1) * sum(C**(-l * k) *
                         product(1 + (C**l - 1)*p(m,q) for m in range(1,n+1))
                                                       for l in range(0, n+1))
示例#34
0
''' the idea is simple: factorize every number from 1 to 20, that is to
reduece every number to its basic form (a unique form expessed using only
prime numbers, due to the fact that every natural number has a unique form).
and then find the maximum power of each prime element.  

1*2*3*(2*2)*5*(2*3)*7*(2*2*2)*(3*3)*(2*5)*11*(2*2*3)*13*(2*7)*(3*5)*(2*2*2*2)*17*(2*3*3)*19*(2*2*5)

1*(2**4)*(3**2)*5*7*11*13*17*19
'''

from euler import uniprimefact, product

nums    = range(1, 20)

d   = {}
for i in nums:
    for (prime, power) in uniprimefact(i).items():
        if (prime in d and d[prime] < power) or (prime not in d):
            d[prime]    = power 

print product(prime**power for (prime, power) in d.items())
示例#35
0
文件: 5.py 项目: higgsd/euler
# 232792560
import euler

D = [n for n in xrange(2, 21)]
n = euler.product(D)
m = 0
for d in D:
    nx = n / d
    while all([nx % dx == 0 for dx in D]):
        n = nx
        nx = n / d
        m = n
print m
示例#36
0
def main():
    return euler.product(
        next(trio for c in range(SUM) for trio in euler.pythagorean_trio_my(c)
             if sum(trio) == SUM))
示例#37
0
文件: 15.py 项目: higgsd/euler
# 137846528820
import euler

N = 20
f20 = euler.product(xrange(1, N + 1))
print euler.product(xrange(1, N * 2 + 1)) / (f20 * f20)
示例#38
0
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450"""


# Initial setup
n_factors = 13
values = [ int(digits[x]) for x in range(n_factors) ]
max_prod = product(values)

# Perform the calculation
for i in range(n_factors, len(digits)):
    try:
        new_value = int(digits[i])
    except:
        continue # Skip newline characters
    values.pop(0)
    values.append(new_value)
    new_prod = product(values)
    if new_prod > max_prod:
        max_prod = new_prod

print(max_prod)
示例#39
0
''' the idea is simple: factorize every number from 1 to 20, that is to
reduece every number to its basic form (a unique form expessed using only
prime numbers, due to the fact that every natural number has a unique form).
and then find the maximum power of each prime element.  

1*2*3*(2*2)*5*(2*3)*7*(2*2*2)*(3*3)*(2*5)*11*(2*2*3)*13*(2*7)*(3*5)*(2*2*2*2)*17*(2*3*3)*19*(2*2*5)

1*(2**4)*(3**2)*5*7*11*13*17*19
'''

from euler import uniprimefact, product

nums = range(1, 20)

d = {}
for i in nums:
    for (prime, power) in uniprimefact(i).items():
        if (prime in d and d[prime] < power) or (prime not in d):
            d[prime] = power

print product(prime**power for (prime, power) in d.items())
示例#40
0
import euler

PRIME_LIST = euler.prime_list(190)
LIMIT = euler.product(PRIME_LIST)
SQRT = euler.int_sqrt(LIMIT)
GLOBAL = {'result': 0}


def work(number, product, index):
    for i in range(42 - 1, index, -1):
        new_product = product * PRIME_LIST[i]
        new_number = number - number % new_product
        if new_number > GLOBAL['result']:
            if not LIMIT % new_number:
                GLOBAL['result'] = new_number
                print(GLOBAL['result'] % 10**16)
            work(new_number, new_product, i)


def main():
    work(SQRT, 1, -1)
    return GLOBAL['result'] % 10**16


if __name__ == '__main__':
    print(main())
示例#41
0
def main():
    return euler.product(
        prime ** int(math.log(LIMIT, prime))
        for prime in euler.prime_list(LIMIT + 1)
    )
示例#42
0
文件: e108.py 项目: drsam94/PELC
from euler import rational, primes, product

def ways(n):
    w = 0

    for a in range(1, 2*n + 1):
        if (rational(1, n) - rational(1, a)).num == 1:
            w += 1
    return w

ps = primes(100)

min_val = float("inf")
for n in range(1, len(ps)):
    for k in range(0,4):
        for m in range(0,4):
            N = product(ps[:n]) * (2**k) * (3**m)
            if N < min_val:
                ws = ways(N)
                if ws > 1000:
                    min_val = N
                    print(min_val, ws)
print(min_val)
示例#43
0
# for more information about this problem, check
# http://mathschallenge.net/index.php?section=faq&ref=number/number_of_divisors
#
# According to Fundamental Theorem of Arithmetic (or Unique Prime-Factorization
# theorem) <http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic>,
# n can be uniquely represented by a^x * b^y * c^z, where a, b, c are primes
# let d(n) = the number of divisors of n
# then d(n) = (x+1) * (y+1) * (z+1)

from euler import uniprimefact, product
from itertools import count


def trinum(n):
    ''' Return the n-th triangle number '''
    return n * (n + 1) / 2


def trinumgen():
    ''' Generate the sequence of triangle numbers '''
    for n in count(1):
        yield trinum(n)


for trin in trinumgen():
    if product(each + 1 for each in uniprimefact(trin).values()) > 500:
        print trin
        break
示例#44
0
def find_max_product(nums):
    nums = map(int, nums)
    return max(product(x) for x in n_grams(nums, 5))
示例#45
0
文件: 11.py 项目: higgsd/euler
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
"""

s = s.split()
grid = [s[i*20:i*20+20] for i in xrange(20)]
for i in xrange(20):
    grid[i] = [int(v, 10) for v in grid[i]]

m = 0
for r in xrange(20):
    for c in xrange(20):
        if c < 20 - 3:
            v = grid[r][c:c+4]
            t = euler.product(v)
            if t > m:
                m = t
        if r < 20 - 3:
            v = [grid[r + i][c] for i in xrange(4)]
            t = euler.product(v)
            if t > m:
                m = t
        if r < 20 - 3 and c < 20 - 3:
            v = [grid[r + i][c + i] for i in xrange(4)]
            t = euler.product(v)
            if t > m:
                m = t
            v = [grid[r + 3 - i][c + i] for i in xrange(4)]
            t = euler.product(v)
            if t > m: