示例#1
0
    def evaluate_design_matrix(self):
        """Produce output design matrices with optional within grid cell sampling"""

        component = self.component

        centre_latitudes = self.centre_latitudes
        centre_longitudes = self.centre_longitudes
        time_index = self.time_index
        corresponding_datetime = self.corresponding_datetime

        latitude_resolution = numpy.float(self.grid_resolution[0])
        longitude_resolution = numpy.float(self.grid_resolution[1])

        latitude_delta = latitude_resolution / numpy.float(
            self.cell_sampling[0])
        longitude_delta = longitude_resolution / numpy.float(
            self.cell_sampling[1])

        # Loop through within cell sampling to compute cell averaging design matrices
        design_matrix = None
        weight_normalisation_array = None
        for latitude_index in range(self.cell_sampling[0]):
            for longitude_index in range(self.cell_sampling[1]):
                point_latitudes = centre_latitudes - latitude_resolution / 2.0 + (
                    0.5 + latitude_index) * latitude_delta
                point_longitudes = centre_longitudes - longitude_resolution / 2.0 + (
                    0.5 + longitude_index) * longitude_delta

                projectionstructure = OutputRectilinearGridStructure(
                    time_index, corresponding_datetime, point_latitudes,
                    point_longitudes)

                block_model_matrix = component.storage.element_read(
                ).element_design(projectionstructure).design_matrix()
                block_weight_array = self.weight_array(
                    projectionstructure.location_polar_coordinates()[:, 0])

                if design_matrix is None:
                    design_matrix = scipy.sparse.diags(block_weight_array).dot(
                        block_model_matrix)
                    weight_normalisation_array = block_weight_array
                else:
                    design_matrix += scipy.sparse.diags(
                        block_weight_array).dot(block_model_matrix)
                    weight_normalisation_array += block_weight_array

        self.design_matrix = scipy.sparse.diags(
            1.0 / weight_normalisation_array).dot(design_matrix)
示例#2
0
    def test_init(self):
        A = OutputRectilinearGridStructure('A', 'B', 'C', 'D')

        self.assertEqual('A', A.time_index_number)
        self.assertEqual('B', A.corresponding_datetime)
        self.assertEqual('C', A.latitudes)
        self.assertEqual('D', A.longitudes)
示例#3
0
    def test_mini_world_local(self):

        # Local component
        local_component = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=1),
                LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(1.0))),
            SpatialComponentSolutionStorage_InMemory(),
            compute_uncertainties=True,
            method='APPROXIMATED')

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([local_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader()

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()
        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(20.0, statevector[12], delta=0.3)
        self.assertAlmostEqual(-15.0, statevector[17], delta=0.3)
        self.assertAlmostEqual(5.0, statevector[41], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 20.0))
        self.assertTrue(all(statevector > -15.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(0)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(statevector[[12, 17, 41]], result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-89.875, 89.875, num=10),
            longitudes=numpy.linspace(-179.875, 179.875, num=20))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 3)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
示例#4
0
def output_grid(storage_climatology, storage_large_scale, storage_local, 
                outputfile, processdate, time_index, 
                covariates_descriptor, insitu_biases, breakpoints_file, global_biases, global_biases_group_list,
                compute_uncertainties, method,
                compute_sample, sample_size):

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(storage_climatology, storage_large_scale, storage_local, 
                                            covariates_descriptor, insitu_biases, breakpoints_file, global_biases, global_biases_group_list,
                                            compute_uncertainties, method,
                                        compute_sample, sample_size)

    #Configure output grid
    outputstructure = OutputRectilinearGridStructure(
	time_index, processdate,
	latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
	longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

    # Evaluate expected value at these locations
    for field in ['MAP', 'post_STD']:
      print 'Evaluating: ',field
      result_expected_value = analysissystem.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
      result_expected_uncertainties = analysissystem.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
      
    print 'Evaluating: climatology fraction'
    climatology_fraction = analysissystem.evaluate_climatology_fraction(outputstructure, [1,1], 1000)
   
    print 'Evaluating: the sample'
    sample = analysissystem.evaluate_projected_sample(outputstructure)
   
    # Save results
    filebuilder = FileBuilderGlobalField(
        outputfile, 
        eustace.timeutils.epoch.days_since_epoch(processdate),
        'Infilling Example',
        get_revision_id_for_module(eustace),
        definitions.TAS.name,
        '',
        'Example data only',
        __name__, 
        '')
    filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))
    
    for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
      variable = copy.deepcopy(definitions.TASENSEMBLE)
      variable.name = variable.name + '_' + str(index)
      selected_sample = sample[:,index].ravel()+result_expected_value
      filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
    
    filebuilder.save_and_close()
示例#5
0
    def test_compute_gridded_expected_value_harmonic_projection(self):
        #Compute cell grid area averages, with projection equalling the cosine of the latitude of each point.

        new_structure = OutputRectilinearGridStructure(
            1, None, numpy.array([-60., 0., 60.]),
            numpy.array([-90., -60., 60., 90.]))
        A = Regridder(new_structure, [2, 3], blocking=2)
        component_solution = TestRegridder.HarmonicComponentSolution()

        # Check it raises an exception if wrong field flags are given
        self.assertRaises(ValueError, A.compute_gridded_expected_value, 'MMP',
                          component_solution)

        my_expected_grid = numpy.array([[-75., -45., -75., -45., -75., -45.],
                                        [-75., -45., -75., -45., -75., -45.],
                                        [-75., -45., -75., -45., -75., -45.],
                                        [-75., -45., -75., -45., -75., -45.],
                                        [-15., 15., -15., 15., -15., 15.],
                                        [-15., 15., -15., 15., -15., 15.],
                                        [-15., 15., -15., 15., -15., 15.],
                                        [-15., 15., -15., 15., -15., 15.],
                                        [45., 75., 45., 75., 45., 75.],
                                        [45., 75., 45., 75., 45., 75.],
                                        [45., 75., 45., 75., 45., 75.],
                                        [45., 75., 45., 75., 45., 75.]])

        expected_MAP_result = (A.weighting_factors(my_expected_grid) *
                               numpy.cos(numpy.radians(my_expected_grid))).sum(
                                   axis=1)
        expected_post_STD_result = (
            A.weighting_factors(my_expected_grid) *
            numpy.sin(numpy.radians(my_expected_grid))).sum(axis=1)
        expected_prior_STD_result = (
            A.weighting_factors(my_expected_grid) *
            numpy.square(numpy.sin(numpy.radians(my_expected_grid)))).sum(
                axis=1)

        for field, array in zip(GLOBAL_FIELD_OUTPUT_FLAGS, [
                expected_MAP_result, expected_post_STD_result,
                expected_prior_STD_result
        ]):
            numpy.testing.assert_array_equal(
                array,
                A.compute_gridded_expected_value(field, component_solution))
示例#6
0
def output_month(outputfile, time_index, processdate):

    print 'Saving: ', processdate
    print 'Output: ', outputfile

    # Configure output grid
    outputstructure = OutputRectilinearGridStructure(
        time_index,
        processdate,
        latitudes=numpy.linspace(-87.5, 87.5, num=36),
        longitudes=numpy.linspace(-177.5, 177.5, num=72))

    # Evaluate expected value at these locations
    result_expected_value = AnalysisSystem_HadCRUT4_InMemory(
    ).evaluate_expected_value(outputstructure)

    # Save results
    filebuilder = FileBuilderHadCRUT4ExampleOutput(outputfile, outputstructure)
    filebuilder.add_global_field(TAS_ANOMALY,
                                 result_expected_value.reshape(1, 36, 72))
    filebuilder.save_and_close()
示例#7
0
    def test_location_polar_coordinates(self):
        A = OutputRectilinearGridStructure('A', 'B', numpy.array([1, 2, 3]),
                                           numpy.array([.1, .3]))

        expected_array = numpy.array([[1, .1], [1, .3], [2, .1], [2, .3],
                                      [3, .1], [3, .3]])
        numpy.testing.assert_array_equal(expected_array,
                                         A.location_polar_coordinates())

        A = OutputRectilinearGridStructure('A', 'B', numpy.array([1, 2]),
                                           numpy.array([.1, .3, .2]))

        expected_array = numpy.array([[1, .1], [1, .3], [1, .2], [2, .1],
                                      [2, .3], [2, .2]])
        numpy.testing.assert_array_equal(expected_array,
                                         A.location_polar_coordinates())
示例#8
0
    def setUp(self):
        """Set up mock objects to be used for testing the Regridder class functionalities"""

        self.structure = OutputRectilinearGridStructure(
            1, None, numpy.array([1, 2, 3, 4]), numpy.array([.2, .3, .4]))

        # Example of latitude and longitude values for different sets of points
        self.points = [
            numpy.array([[-180.], [-90.], [0.]]),
            numpy.array([[-180., -90.], [0., 90.], [-45, 45]]),
            numpy.array([[-180., -90., 0., 90., -45, 45]])
        ]

        # Expected harmonic factors
        self.expected_arrays = [
            numpy.array([[-1], [0.], [1.]]),
            numpy.array([[-1, 0.], [1., 0.],
                         [numpy.sqrt(2.) / 2.,
                          numpy.sqrt(2.) / 2.]]),
            numpy.array(
                [[-1, 0., 1., 0.,
                  numpy.sqrt(2.) / 2.,
                  numpy.sqrt(2.) / 2.]])
        ]

        self.expected_normalizations = [
            numpy.array([[-1], [0.], [1.]]),
            numpy.array([[-1], [1.], [numpy.sqrt(2.)]]),
            numpy.array([[numpy.sqrt(2.)]])
        ]

        # We cannot divide by zero, we discard the first normalization factor
        self.expected_weithing_factors = []
        for index in range(1, len(self.expected_arrays)):
            self.expected_weithing_factors.append(
                self.expected_arrays[index] /
                self.expected_normalizations[index])

        self.cell_dimensions = [[1, 1], [2, 1], [6, 1]]
示例#9
0
def output_grid_component(storage_climatology, storage_large_scale, storage_local, 
        outputfile, processdate, time_index, 
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases, global_biases_group_list,
        compute_uncertainties, method):

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(storage_climatology, storage_large_scale, storage_local, 
                        covariates_descriptor, insitu_biases, breakpoints_file, global_biases, global_biases_group_list,
                        compute_uncertainties, method)

    # Configure output grid
    outputstructure = OutputRectilinearGridStructure(
        time_index, processdate,
        latitudes=numpy.linspace(-89.875, 89.875, num=definitions.GLOBAL_FIELD_SHAPE[1]),
        longitudes=numpy.linspace(-179.875, 179.875, num=definitions.GLOBAL_FIELD_SHAPE[2]))

    # Evaluate expected value at these locations
    for field in ['MAP', 'post_STD']:
      print 'Evaluating: ',field
      result_expected_value = analysissystem.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
      result_expected_uncertainties = analysissystem.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
      
    # Save results
    filebuilder = FileBuilderGlobalField(
        outputfile, 
        eustace.timeutils.epoch.days_since_epoch(processdate),
        'Infilling Example',
        get_revision_id_for_module(eustace),
        definitions.TAS.name,
        '',
        'Example data only',
        __name__, 
        '')
    filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    
    filebuilder.save_and_close()
示例#10
0
def latent_variable_flag(input_directory, output_directory, iteration, processing_dates):
    
    # manually setup the analysis model for the R1413 run - Warning: the eustace svn revision must be correct for the global bias model interpretation to that run analysis
    
    storage_climatology = SpaceTimeComponentSolutionStorageBatched_Files( statefilename_read='/work/scratch/cmorice/advanced_standard/climatology_solution_9/climatology_solution_9.pickle',
                                                                          sample_filename_read='/work/scratch/cmorice/advanced_standard/climatology_solution_sample_9/climatology_solution_sample_9.pickle',
                                                                          prior_sample_filename_read='/work/scratch/cmorice/advanced_standard/climatology_solution_prior_sample_9/climatology_solution_prior_sample_9.pickle',
                                                                          keep_in_memory = True )
    
    storage_large_scale = SpaceTimeComponentSolutionStorageBatched_Files( statefilename_read='/work/scratch/cmorice/advanced_standard/large_scale_solution_9/large_scale_solution_9.pickle',
                                                                          sample_filename_read='/work/scratch/cmorice/advanced_standard/large_scale_solution_sample_9/large_scale_solution_sample_9.pickle',
                                                                          prior_sample_filename_read='/work/scratch/cmorice/advanced_standard/large_scale_solution_prior_sample_9/large_scale_solution_prior_sample_9.pickle',
                                                                          keep_in_memory = True )
                                                                          
    storage_local = eustace.analysis.advanced_standard.components.storage_files_batch.SpatialComponentSolutionStorageIndexed_Files()
    covariates_descriptor = "/gws/nopw/j04/eustace/data/internal/climatology_covariates/covariates.json"
    insitu_biases = True
    breakpoints_file = "/gws/nopw/j04/eustace/data/internal/D1.7/daily/eustace_stations_global_R001127_daily_status.nc"
    global_biases = True
    global_biases_group_list = ["surfaceairmodel_ice_global" , "surfaceairmodel_land_global", "surfaceairmodel_ocean_global"]
    compute_uncertainties = False
    method = 'EXACT'
    compute_sample = False
    sample_size = definitions.GLOBAL_SAMPLE_SHAPE[3]
    compute_prior_sample = False


    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(storage_climatology, storage_large_scale, storage_local, 
                        covariates_descriptor, insitu_biases, breakpoints_file, global_biases, global_biases_group_list,
                        compute_uncertainties, method)
    
    
    grid_resolution = [180. / definitions.GLOBAL_FIELD_SHAPE[1], 360. / definitions.GLOBAL_FIELD_SHAPE[2]]
    
    latitudes=numpy.linspace(-90.+grid_resolution[0]/2., 90.-grid_resolution[0]/2, num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes=numpy.linspace(-180.+grid_resolution[1]/2., 180.-grid_resolution[1]/2, num=definitions.GLOBAL_FIELD_SHAPE[2])
    
    #timebase = TimeBaseDays(eustace.timeutils.epoch.EPOCH)
    #processdates = [timebase.number_to_datetime(daynumber) for daynumber in time_indices]
    
    # get times as understood by the analysis sustem
    time_indices =[eustace.timeutils.epoch.days_since_epoch(t) for t in processing_dates]
    
    cell_sampling   = [1, 1]
    blocking = 10

    # thinned set of sample indices for inclusion in output product
    sample_indices = range(definitions.GLOBAL_SAMPLE_SHAPE[3])
    
    climatology_projector = None
    large_scale_projector = None
    local_projector = None

    
    for ( inner_index, time_index, processdate ) in zip( range(len(time_indices)), time_indices, processing_dates ):
        print time_index
        
        # initialise flags
        flag_values = numpy.zeros( definitions.GLOBAL_FIELD_SHAPE[1:], FLAG_TYPE )
        
        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(time_index, processdate,
                                                     latitudes=latitudes,
                                                     longitudes=longitudes)
        
        # climatology component
        print 'Evaluating: climatology'
        if climatology_projector is None:
            climatology_projector = Projector(latitudes, longitudes, grid_resolution, time_index, cell_sampling, blocking)
            climatology_projector.set_component(analysissystem.components[0])
            
            latent_climatology_constraint = evaluate_latent_variable_constraint(climatology_projector)
        
        climatology_projector.update_time_index(time_index, keep_design = False)
        climatology_projector.evaluate_design_matrix()
        
        climatology_statistic = evaluate_constraint_statistic(climatology_projector, latent_climatology_constraint, CONSTRAINT_THRESHOLD).reshape(definitions.GLOBAL_FIELD_SHAPE[1:])

         

        flag_values[climatology_statistic] = flag_values[climatology_statistic] | CLIMATOLOGY_LATENT_FLAG
        
        # large scale component
        print 'Evaluating: large-scale'
        if large_scale_projector is None:
            large_scale_projector = Projector(latitudes, longitudes, grid_resolution, time_index, cell_sampling, blocking)
            large_scale_projector.set_component(analysissystem.components[1])
            
            latent_large_scale_constraint = evaluate_latent_variable_constraint(large_scale_projector)
            
        large_scale_projector.update_time_index(time_index, keep_design = False)
        large_scale_projector.evaluate_design_matrix()
        
        large_scale_statistic = evaluate_constraint_statistic(large_scale_projector, latent_large_scale_constraint, CONSTRAINT_THRESHOLD).reshape(definitions.GLOBAL_FIELD_SHAPE[1:])

        flag_values[large_scale_statistic] = flag_values[large_scale_statistic] | LARGE_SCALE_LATENT_FLAG
        
        outputfile = os.path.join(output_directory, '{:04d}'.format(processdate.year), 'eustace_analysis_{:d}_qc_flags_{:04d}{:02d}{:02d}.nc'.format(iteration, processdate.year, processdate.month, processdate.day))
        save_flag_file(flag_values, processdate, outputfile)
示例#11
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(
        description='Advanced standard example using a few days of EUSTACE data'
    )
    parser.add_argument('outpath',
                        help='directory where the output should be redirected')
    parser.add_argument(
        '--json_descriptor',
        default=None,
        help=
        'a json descriptor containing the covariates to include in the climatology model'
    )
    parser.add_argument('--land_biases',
                        action='store_true',
                        help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases',
                        action='store_true',
                        help='include global satellite bias terms')
    parser.add_argument('--n_iterations',
                        type=int,
                        default=5,
                        help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    #time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))
    #time_indices = range(int(days_since_epoch(datetime(1906, 2, 1))), int(days_since_epoch(datetime(1906, 2, 2))))

    date_list = [
        datetime(2006, 1, 1) + relativedelta(days=k) for k in range(3)
    ]

    #backwards_list = [date_list[i] for i in range(11, -1, -1)]
    #date_list = backwards_list

    time_indices = [int(days_since_epoch(date)) for date in date_list]

    # Sources to use
    sources = [
        'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice',
        'insitu_land', 'insitu_ocean'
    ]
    sources = ['insitu_land', 'insitu_ocean']
    #sources = [ 'surfaceairmodel_land' ]
    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects

    if args.json_descriptor is not None:
        loader = LoadCovariateElement(args.json_descriptor)
        loader.check_keys()
        covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
        )
        print(
            'The following fields have been added as covariates of the climatology model'
        )
        print(loader.data.keys())
    else:
        covariate_elements, covariate_hyperparameters = [], []

    #climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False), GrandMeanElement()]+covariate_elements)
    #climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0), CovariateHyperparameters(numpy.log(15.0))] + covariate_hyperparameters )

    climatology_element = CombinationElement([
        GrandMeanElement(),
    ] + covariate_elements)
    climatology_hyperparameters = CombinationHyperparameters([
        CovariateHyperparameters(numpy.log(15.0)),
    ] + covariate_hyperparameters)

    #climatology_element =SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False)
    #climatology_hyperparameters = SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0)

    climatology_component = SpaceTimeComponent(
        ComponentStorage_InMemory(climatology_element,
                                  climatology_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects

    if args.land_biases:
        bias_element, bias_hyperparameters = [
            InsituLandBiasElement(BREAKPOINTS_FILE)
        ], [CovariateHyperparameters(numpy.log(.9))]
        print('Adding bias terms for insitu land homogenization')
    else:
        bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement([
        SpaceTimeKroneckerElement(n_triangulation_divisions=2,
                                  alpha=2,
                                  starttime=-30,
                                  endtime=365 * 1 + 30,
                                  n_nodes=12 * 1 + 2,
                                  overlap_factor=2.5,
                                  H=1)
    ] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters([
        SpaceTimeSPDEHyperparameters(space_log_sigma=0.0,
                                     space_log_rho=numpy.log(
                                         numpy.radians(15.0)),
                                     time_log_rho=numpy.log(15.0))
    ] + bias_hyperparameters)
    large_scale_component = SpaceTimeComponent(
        ComponentStorage_InMemory(large_scale_element,
                                  large_scale_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms

    if args.global_biases:
        bias_elements = [
            BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST
        ]
        bias_hyperparameters = [
            CovariateHyperparameters(numpy.log(15.0)) for index in range(3)
        ]
        print('Adding global bias terms for all the surfaces')
    else:
        bias_elements, bias_hyperparameters = [], []

    n_triangulation_divisions_local = 7
    local_log_sigma = numpy.log(5)
    local_log_rho = numpy.log(numpy.radians(5.0))
    local_element = NonStationaryLocal(
        n_triangulation_divisions=n_triangulation_divisions_local)
    n_local_nodes = local_element.spde.n_latent_variables()
    local_scale_element = CombinationElement([local_element] + bias_elements)
    local_hyperparameters = ExpandedLocalHyperparameters(
        log_sigma=numpy.repeat(local_log_sigma, n_local_nodes),
        log_rho=numpy.repeat(local_log_rho, n_local_nodes))
    local_scale_hyperparameters = CombinationHyperparameters(
        [local_hyperparameters] + bias_hyperparameters)
    local_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(local_scale_element,
                                  local_scale_hyperparameters),
        SpatialComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')
    print "hyperparameter storage:", local_component.storage.hyperparameters
    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    ##analysis_system = AnalysisSystem(
    ##    [ climatology_component, large_scale_component, local_component ],
    ##    ObservationSource.TMEAN)

    analysis_system = OptimizationSystem(
        [climatology_component, local_component], ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [
        AnalysisSystemInputLoaderRawBinary_Sources(basepath, source,
                                                   time_indices)
        for source in sources
    ]

    for iteration in range(args.n_iterations):

        message = 'Iteration {}'.format(iteration)
        print(message)

        # Update with data
        analysis_system.update(inputloaders, time_indices)

    ##################################################

    # Optimize local model hyperparameters

    # Loop over local regions, generate optimization systems, fit hyperparameters and save

    # split spde and bias models for local component into two components
    global_spde_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement([local_element]),
        CombinationHyperparameters([local_hyperparameters]))
    global_spde_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    global_spde_sub_component = DelayedSpatialComponent(
        global_spde_sub_component_definition,
        global_spde_sub_component_storage_solution)

    bias_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement(bias_elements),
        CombinationHyperparameters(bias_hyperparameters))
    bias_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    bias_sub_component = DelayedSpatialComponent(
        bias_sub_component_definition, bias_sub_component_storage_solution)

    element_optimisation_flags = [True, False, False,
                                  False]  # one spde, three biases

    for time_key in time_indices:
        split_states_time(local_component, global_spde_sub_component,
                          bias_sub_component, element_optimisation_flags,
                          time_key)

    # Define subregions and extract their states
    neighbourhood_level = 1

    n_subregions = global_spde_sub_component.storage.element_read(
    ).combination[0].spde.n_triangles_at_level(neighbourhood_level)
    hyperparameter_file_template = "local_hyperparameters.%i.%i.%i.npy"

    fit_hyperparameters = True
    optimization_component_index = 2
    if fit_hyperparameters:
        for region_index in range(n_subregions):
            # Setup model for local subregion of neighours with super triangle
            view_flags = [
                True,
            ]
            region_element = CombinationElement([
                LocalSubRegion(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
            ])
            region_hyperparameters = ExtendedCombinationHyperparameters([
                LocalHyperparameters(log_sigma=local_log_sigma,
                                     log_rho=local_log_rho)
            ])
            region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
            )
            region_sub_component = DelayedSpatialComponent(
                ComponentStorage_InMemory(region_element,
                                          region_hyperparameters),
                region_component_storage_solution)

            for time_key in time_indices:
                print "region_index, time_key:", region_index, time_key
                extract_local_view_states_time(global_spde_sub_component,
                                               region_sub_component,
                                               view_flags, time_key)

            print "running optimization for region:", region_index

            region_optimization_system = OptimizationSystem([
                climatology_component, bias_sub_component, region_sub_component
            ], ObservationSource.TMEAN)

            for time_key in time_indices:
                region_optimization_system.update_component_time(
                    inputloaders, optimization_component_index, time_key)

            # commented version that works for few days inputs
            #region_optimization_system.components[optimization_component_index].component_solution().optimize()
            #region_optimization_system.components[optimization_component_index].storage.hyperparameters.get_array()
            #hyperparameter_file = os.path.join(args.outpath, hyperparameter_file_template % (n_triangulation_divisions_local, neighbourhood_level, region_index) )
            #region_sub_component.storage.hyperparameters.values_to_npy_savefile( hyperparameter_file )

            # replaced with version for full processing based json dump of input files - need to generate the input_descriptor dict
            hyperparameter_file = os.path.join(
                args.outpath, hyperparameter_file_template %
                (n_triangulation_divisions_local, neighbourhood_level,
                 region_index))
            region_optimization_system.process_inputs(
                input_descriptor, optimization_component_index, time_indices)
            region_optimization_system.optimize_component(
                optimization_component_index,
                hyperparameter_storage_file=hyperparameter_file)

            fitted_hyperparameters_converted = region_sub_component.storage.hyperparameters.get_array(
            )
            fitted_hyperparameters_converted[0] = numpy.exp(
                fitted_hyperparameters_converted[0])
            fitted_hyperparameters_converted[1] = numpy.exp(
                fitted_hyperparameters_converted[1]) * 180.0 / numpy.pi
            print 'fitted_hyperparameters_converted:', fitted_hyperparameters_converted

    # Setup model for the super triangle without neighbours for hyperparameter merging
    region_spdes = []
    region_hyperparameter_values = []
    for region_index in range(n_subregions):
        # Redefine the region sub component as a supertriangle rather than a neighbourhood
        region_element = CombinationElement([
            LocalSuperTriangle(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
        ])
        region_hyperparameters = ExtendedCombinationHyperparameters([
            LocalHyperparameters(log_sigma=local_log_sigma,
                                 log_rho=local_log_rho)
        ])
        region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
        )
        region_sub_component = DelayedSpatialComponent(
            ComponentStorage_InMemory(region_element, region_hyperparameters),
            region_component_storage_solution)

        # Read the optimized hyperparameters
        hyperparameter_file = os.path.join(
            args.outpath,
            hyperparameter_file_template % (n_triangulation_divisions_local,
                                            neighbourhood_level, region_index))
        region_sub_component.storage.hyperparameters.values_from_npy_savefile(
            hyperparameter_file)

        # Append the spde model and hyperparameters to their lists for merging
        region_spdes.append(region_element.combination[0].spde)
        region_hyperparameter_values.append(
            region_sub_component.storage.hyperparameters.get_array())

    # merge and save hyperparameters
    full_spde = local_element.spde
    new_hyperparameter_values, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
        region_spdes, region_hyperparameter_values, merge_method='exp_average')

    local_hyperparameters.set_array(new_hyperparameter_values)
    hyperparameter_file_merged = "merged_hyperparameters.%i.%i.npy" % (
        n_triangulation_divisions_local, neighbourhood_level)
    local_hyperparameters.values_to_npy_savefile(
        os.path.join(args.outpath, hyperparameter_file_merged))

    # Refit local model with the optimized hyperparameters
    analysis_system.update_component(inputloaders, 1, time_indices)

    ##################################################

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index,
            outputdate,
            latitudes=numpy.linspace(-89.875,
                                     89.875,
                                     num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-179.875,
                                      179.875,
                                      num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # print 'Size of grid : ', outputstructure.number_of_observations()

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        result_expected_uncertainties = analysis_system.evaluate_expected_value(
            'post_STD', outputstructure, 'POINTWISE')

        # Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(
            outputdate.year, outputdate.month, outputdate.day)
        pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, time_index, 'Infilling Example', 'UNVERSIONED',
            definitions.TAS.name, '', 'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days',
            '')
        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

    print 'Complete'
示例#12
0
    def test_mini_world_altitude_with_latitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 5, 7, 8, 9, 10, 11
                          ]), numpy.array([0, 0, 0, 0, 0, 0, 0, 0])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated model is y = z + a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x), with z = altitude, x = latitude, a=b=c=d=0
        slope = 1e-3
        measurement = slope * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        combined_element = CombinationElement(
            [geography_covariate_element,
             LatitudeHarmonicsElement()])
        combined_hyperparamters = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(10.)),
            CombinationHyperparameters([
                CovariateHyperparameters(-0.5 * numpy.log(p))
                for p in [10.0, 10.0, 10.0, 10.0]
            ])
        ])
        combined_component = SpatialComponent(
            ComponentStorage_InMemory(combined_element,
                                      combined_hyperparamters),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([combined_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(slope, statevector[0], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        self.assertAlmostEqual(0., statevector[4], delta=0.3)

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*numpy.array(altitude_observations)\
                        + statevector[1]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[2]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[3]*LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()\
                        + statevector[4]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
示例#13
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
示例#14
0
def output_grid_batch(storage_climatology, storage_large_scale, storage_local,
                      outputfiles, climatologyfiles, largescalefiles,
                      localfiles, time_indices, covariates_descriptor,
                      insitu_biases, breakpoints_file, global_biases,
                      global_biases_group_list, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample):

    from eustace.analysis.advanced_standard.fileio.output_projector import Projector

    variance_ratio_upper_bound = 1.0

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(
        storage_climatology, storage_large_scale, storage_local,
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases,
        global_biases_group_list, compute_uncertainties, method)

    grid_resolution = [
        180. / definitions.GLOBAL_FIELD_SHAPE[1],
        360. / definitions.GLOBAL_FIELD_SHAPE[2]
    ]

    latitudes = numpy.linspace(-90. + grid_resolution[0] / 2.,
                               90. - grid_resolution[0] / 2,
                               num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes = numpy.linspace(-180. + grid_resolution[1] / 2.,
                                180. - grid_resolution[1] / 2,
                                num=definitions.GLOBAL_FIELD_SHAPE[2])

    timebase = TimeBaseDays(eustace.timeutils.epoch.EPOCH)
    #processdates = [datetime_numeric.build( timebase.number_to_datetime(daynumber) ) for daynumber in time_indices]
    processdates = [
        timebase.number_to_datetime(daynumber) for daynumber in time_indices
    ]

    cell_sampling = [1, 1]
    blocking = 10

    # thinned set of sample indices for inclusion in output product
    sample_indices = range(definitions.GLOBAL_SAMPLE_SHAPE[3])

    climatology_projector = None
    large_scale_projector = None
    local_projector = None

    for (inner_index, time_index, processdate) in zip(range(len(time_indices)),
                                                      time_indices,
                                                      processdates):
        print time_index
        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(time_index,
                                                         processdate,
                                                         latitudes=latitudes,
                                                         longitudes=longitudes)

        # climatology component
        print 'Evaluating: climatology'
        if climatology_projector is None:
            climatology_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            climatology_projector.set_component(analysissystem.components[0])

        climatology_projector.update_time_index(time_index, keep_design=False)
        climatology_projector.evaluate_design_matrix()

        climatology_expected_value = climatology_projector.project_expected_value(
        ).reshape((-1, 1))
        climatology_uncertainties = climatology_projector.project_sample_deviation(
        )
        climatology_samples = climatology_projector.project_sample_values(
            sample_indices=sample_indices) + climatology_expected_value
        climatology_unconstraint = numpy.minimum(
            climatology_uncertainties**2 /
            climatology_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # large scale component
        print 'Evaluating: large-scale'
        if large_scale_projector is None:
            large_scale_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            large_scale_projector.set_component(analysissystem.components[1])

        large_scale_projector.update_time_index(time_index, keep_design=False)
        large_scale_projector.evaluate_design_matrix()

        large_scale_expected_value = large_scale_projector.project_expected_value(
        ).reshape((-1, 1))
        large_scale_uncertainties = large_scale_projector.project_sample_deviation(
        )
        large_scale_samples = large_scale_projector.project_sample_values(
            sample_indices=sample_indices) + large_scale_expected_value
        large_scale_unconstraint = numpy.minimum(
            large_scale_uncertainties**2 /
            large_scale_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # local component - time handling updates state to new time but does not recompute the design matrix
        print 'Evaluating: local'
        if local_projector is None:
            local_projector = Projector(latitudes, longitudes, grid_resolution,
                                        time_index, cell_sampling, blocking)
            local_projector.set_component(analysissystem.components[2])
            local_projector.evaluate_design_matrix()
        else:
            local_projector.update_time_index(time_index, keep_design=True)
            local_projector.set_component(analysissystem.components[2],
                                          keep_design=True)

        print analysissystem.components

        local_expected_value = local_projector.project_expected_value(
        ).reshape((-1, 1))
        local_uncertainties = local_projector.project_sample_deviation()
        local_samples = local_projector.project_sample_values(
            sample_indices=sample_indices) + local_expected_value

        local_unconstraint = numpy.minimum(
            local_uncertainties**2 /
            local_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # Save results
        outputfile = outputfiles[inner_index]
        print outputfile
        # main merged product output files
        filebuilder = FileBuilderGlobalField(
            outputfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional output', __name__, '')

        result_expected_value = climatology_expected_value + large_scale_expected_value + local_expected_value
        result_expected_uncertainties = numpy.sqrt(
            climatology_uncertainties**2 + large_scale_uncertainties**2 +
            local_uncertainties**2)
        climatology_fraction = local_unconstraint  # defined as ratio of posterior to prior variance in local component

        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE,
            1.0 - climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

        for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
            variable = copy.deepcopy(definitions.TASENSEMBLE)
            variable.name = variable.name + '_' + str(index)
            selected_sample = (climatology_samples[:, index] +
                               large_scale_samples[:, index] +
                               local_samples[:, index]).ravel()
            filebuilder.add_global_field(
                variable,
                selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # climatology only output
        climatologyfile = climatologyfiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            climatologyfile,
            eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '',
            'Provisional component output - climatology', __name__, '')

        filebuilder.add_global_field(
            definitions.TAS,
            climatology_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            climatology_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE, 1.0 -
            climatology_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # large scale only output
        largescalefile = largescalefiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            largescalefile,
            eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '',
            'Provisional component output - large scale', __name__, '')

        filebuilder.add_global_field(
            definitions.TASPERTURBATION,
            large_scale_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            large_scale_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE, 1.0 -
            large_scale_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # local only output
        localfile = localfiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            localfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional component output - local',
            __name__, '')

        filebuilder.add_global_field(
            definitions.TASPERTURBATION,
            local_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            local_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE,
            1.0 - local_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        print "Memory usage (MB):", psutil.Process(
            os.getpid()).memory_info().rss / (1024 * 1024)
示例#15
0
def early_look_grid_batch(
        storage_climatology, storage_large_scale, storage_local, outputfiles,
        time_indices, covariates_descriptor, insitu_biases, breakpoints_file,
        global_biases, global_biases_group_list, compute_uncertainties, method,
        compute_sample, sample_size, compute_prior_sample):
    """Produce 'early look' NetCDF output files without loading or gridding uncertainty information
    
    For inspection of analysis output prior to the final gridding step.
    
    """

    from eustace.analysis.advanced_standard.fileio.output_projector import Projector

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(
        storage_climatology, storage_large_scale, storage_local,
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases,
        global_biases_group_list, compute_uncertainties, method)

    grid_resolution = [
        180. / definitions.GLOBAL_FIELD_SHAPE[1],
        360. / definitions.GLOBAL_FIELD_SHAPE[2]
    ]

    latitudes = numpy.linspace(-90. + grid_resolution[0] / 2.,
                               90. - grid_resolution[0] / 2,
                               num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes = numpy.linspace(-180. + grid_resolution[1] / 2.,
                                180. - grid_resolution[1] / 2,
                                num=definitions.GLOBAL_FIELD_SHAPE[2])

    timebase = TimeBaseDays(eustace.timeutils.epoch.EPOCH)

    processdates = [
        timebase.number_to_datetime(daynumber) for daynumber in time_indices
    ]

    cell_sampling = [1, 1]
    blocking = 10

    # thinned set of sample indices for inclusion in output product

    climatology_projector = None
    large_scale_projector = None
    local_projector = None

    for (inner_index, time_index, processdate) in zip(range(len(time_indices)),
                                                      time_indices,
                                                      processdates):
        print time_index
        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(time_index,
                                                         processdate,
                                                         latitudes=latitudes,
                                                         longitudes=longitudes)

        # climatology component
        print 'Evaluating: climatology'
        if climatology_projector is None:
            climatology_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            climatology_projector.set_component(analysissystem.components[0])

        climatology_projector.update_time_index(time_index, keep_design=False)
        climatology_projector.evaluate_design_matrix()

        climatology_expected_value = climatology_projector.project_expected_value(
        ).reshape((-1, 1))

        # large scale component
        print 'Evaluating: large-scale'
        if large_scale_projector is None:
            large_scale_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            large_scale_projector.set_component(analysissystem.components[1])

        large_scale_projector.update_time_index(time_index, keep_design=False)
        large_scale_projector.evaluate_design_matrix()

        large_scale_expected_value = large_scale_projector.project_expected_value(
        ).reshape((-1, 1))

        # local component - time handling updates state to new time but does not recompute the design matrix
        print 'Evaluating: local'
        if local_projector is None:
            local_projector = Projector(latitudes, longitudes, grid_resolution,
                                        time_index, cell_sampling, blocking)
            local_projector.set_component(analysissystem.components[2])
            local_projector.evaluate_design_matrix()
        else:
            local_projector.update_time_index(time_index, keep_design=True)
            local_projector.set_component(analysissystem.components[2],
                                          keep_design=True)

        print analysissystem.components

        local_expected_value = local_projector.project_expected_value(
        ).reshape((-1, 1))

        # Save results
        outputfile = outputfiles[inner_index]
        print outputfile
        # main merged product output files
        filebuilder = FileBuilderGlobalField(
            outputfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional output', __name__, '')

        field_definition_tas = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_TEMPERATURE,
            'tas',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_climatology = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_TEMPERATURE,
            'tas_climatology',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_large_scale = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_PERTURBATION,
            'tas_large_scale',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_daily_local = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_PERTURBATION,
            'tas_daily_local',
            quantity='average',
            cell_methods='time: mean')

        result_expected_value = climatology_expected_value + large_scale_expected_value + local_expected_value
        filebuilder.add_global_field(
            field_definition_tas,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_climatology,
            climatology_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_large_scale,
            large_scale_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_daily_local,
            local_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

        print "Memory usage (MB):", psutil.Process(
            os.getpid()).memory_info().rss / (1024 * 1024)
示例#16
0
def output_grid(storage_climatology, storage_large_scale, storage_local,
                outputfile, climatologyfile, largescalefile, localfile,
                processdate, time_index, covariates_descriptor, insitu_biases,
                breakpoints_file, global_biases, global_biases_group_list,
                compute_uncertainties, method, compute_sample, sample_size,
                compute_prior_sample):

    from eustace.analysis.advanced_standard.fileio.output_projector import Projector

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(
        storage_climatology, storage_large_scale, storage_local,
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases,
        global_biases_group_list, compute_uncertainties, method)

    grid_resolution = [
        180. / definitions.GLOBAL_FIELD_SHAPE[1],
        360. / definitions.GLOBAL_FIELD_SHAPE[2]
    ]

    latitudes = numpy.linspace(-90. + grid_resolution[0] / 2.,
                               90. - grid_resolution[0] / 2,
                               num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes = numpy.linspace(-180. + grid_resolution[1] / 2.,
                                180. - grid_resolution[1] / 2,
                                num=definitions.GLOBAL_FIELD_SHAPE[2])

    cell_sampling = [1, 1]
    blocking = 10

    # Configure output grid
    outputstructure = OutputRectilinearGridStructure(time_index,
                                                     processdate,
                                                     latitudes=latitudes,
                                                     longitudes=longitudes)

    # thinned set of sample indices for inclusion in output product
    sample_indices = range(definitions.GLOBAL_SAMPLE_SHAPE[3])

    # climatology component
    print 'Evaluating: climatology'
    climatology_projector = Projector(latitudes, longitudes, grid_resolution,
                                      time_index, cell_sampling, blocking)
    climatology_projector.set_component(analysissystem.components[0])
    climatology_projector.evaluate_design_matrix()

    climatology_expected_value = climatology_projector.project_expected_value(
    ).reshape((-1, 1))
    climatology_uncertainties = climatology_projector.project_sample_deviation(
    )
    climatology_samples = climatology_projector.project_sample_values(
        sample_indices=sample_indices) + climatology_expected_value
    climatology_unconstraint = climatology_uncertainties**2 / climatology_projector.project_sample_deviation(
        prior=True)**2

    climatology_projector = None  # clear projector from memory

    print climatology_expected_value.shape, climatology_uncertainties.shape, climatology_samples.shape

    # large scale component
    print 'Evaluating: large-scale'
    large_scale_projector = Projector(latitudes, longitudes, grid_resolution,
                                      time_index, cell_sampling, blocking)
    large_scale_projector.set_component(analysissystem.components[1])
    large_scale_projector.evaluate_design_matrix()

    large_scale_expected_value = large_scale_projector.project_expected_value(
    ).reshape((-1, 1))
    large_scale_uncertainties = large_scale_projector.project_sample_deviation(
    )
    large_scale_samples = large_scale_projector.project_sample_values(
        sample_indices=sample_indices) + large_scale_expected_value
    large_scale_unconstraint = large_scale_uncertainties**2 / large_scale_projector.project_sample_deviation(
        prior=True)**2

    large_scale_projector = None  # clear projector from memory

    print large_scale_expected_value.shape, large_scale_uncertainties.shape, large_scale_samples.shape

    # local component
    print 'Evaluating: local'
    local_projector = Projector(latitudes, longitudes, grid_resolution,
                                time_index, cell_sampling, blocking)
    local_projector.set_component(analysissystem.components[2])
    local_projector.evaluate_design_matrix()

    local_expected_value = local_projector.project_expected_value().reshape(
        (-1, 1))
    local_uncertainties = local_projector.project_sample_deviation()
    local_samples = local_projector.project_sample_values(
        sample_indices=sample_indices) + local_expected_value
    local_unconstraint = local_uncertainties**2 / local_projector.project_sample_deviation(
        prior=True)**2

    local_projector = None  # clear projector from memory

    print local_expected_value.shape, local_uncertainties.shape, local_samples.shape

    # Save results
    print outputfile
    # main merged product output files
    filebuilder = FileBuilderGlobalField(
        outputfile, eustace.timeutils.epoch.days_since_epoch(processdate),
        'EUSTACE Analysis', get_revision_id_for_module(eustace),
        definitions.TAS.name, '', 'Provisional output', __name__, '')

    climatology_fraction = local_unconstraint  # defined as ratio of posterior to prior variance in local component

    result_expected_value = climatology_expected_value + large_scale_expected_value + local_expected_value
    result_expected_uncertainties = numpy.sqrt(climatology_uncertainties**2 +
                                               large_scale_uncertainties**2 +
                                               local_uncertainties**2)

    filebuilder.add_global_field(
        definitions.TAS,
        result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TASUNCERTAINTY,
        result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TAS_CLIMATOLOGY_FRACTION,
        climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

    for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
        variable = copy.deepcopy(definitions.TASENSEMBLE)
        variable.name = variable.name + '_' + str(index)
        selected_sample = (climatology_samples[:, index] +
                           large_scale_samples[:, index] +
                           local_samples[:, index]).ravel()
        filebuilder.add_global_field(
            variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))

    filebuilder.save_and_close()

    # climatology only output
    filebuilder = FileBuilderGlobalField(
        climatologyfile, eustace.timeutils.epoch.days_since_epoch(processdate),
        'EUSTACE Analysis', get_revision_id_for_module(eustace),
        definitions.TAS.name, '', 'Provisional component output - climatology',
        __name__, '')

    filebuilder.add_global_field(
        definitions.TAS,
        climatology_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TASUNCERTAINTY,
        climatology_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TAS_CLIMATOLOGY_FRACTION,
        climatology_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

    # large scale only output
    filebuilder = FileBuilderGlobalField(
        largescalefile, eustace.timeutils.epoch.days_since_epoch(processdate),
        'EUSTACE Analysis', get_revision_id_for_module(eustace),
        definitions.TAS.name, '', 'Provisional component output - large scale',
        __name__, '')

    filebuilder.add_global_field(
        definitions.TASPERTURBATION,
        large_scale_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TASUNCERTAINTY,
        large_scale_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TAS_CLIMATOLOGY_FRACTION,
        large_scale_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

    # local only output
    filebuilder = FileBuilderGlobalField(
        localfile, eustace.timeutils.epoch.days_since_epoch(processdate),
        'EUSTACE Analysis', get_revision_id_for_module(eustace),
        definitions.TAS.name, '', 'Provisional component output - local',
        __name__, '')

    filebuilder.add_global_field(
        definitions.TASPERTURBATION,
        local_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TASUNCERTAINTY,
        local_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
    filebuilder.add_global_field(
        definitions.TAS_CLIMATOLOGY_FRACTION,
        local_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))
示例#17
0
    def test_mini_world_noiseless(self):

        number_of_simulated_time_steps = 1

        # Build system
        element = SeasonalElement(n_triangulation_divisions=3,
                                  n_harmonics=5,
                                  include_local_mean=True)
        hyperparameters = SeasonalHyperparameters(n_spatial_components=6,
                                                  common_log_sigma=0.0,
                                                  common_log_rho=0.0)

        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = numpy.random.randn(fixed_locations.shape[0])
        #print(field_basis.shape)
        #time_basis = numpy.array(harmonics_list)
        # some time function that varies over a year
        #decimal_years = numpy.array([datetime_to_decimal_year(epoch_plus_days(step)) for step in range(number_of_simulated_time_steps)])
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))
        # kronecker product of the two
        #print(numpy.expand_dims(time_basis, 1))
        measurement = numpy.kron(field_basis, numpy.expand_dims(
            time_basis, 1))  #numpy.expand_dims(time_basis, 1))

        #print(measurement.shape)
        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.0001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

    # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

    # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
示例#18
0
    def setUp(self):
        """Set up mock objects to be used for testing the Regridder class functionalities"""

        self.structure = OutputRectilinearGridStructure(
            1, None, numpy.array([1, 2, 3, 4]), numpy.array([.2, .3, .4]))
示例#19
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'
示例#20
0
    def test_number_of_observations(self):
        A = OutputRectilinearGridStructure('A', 'B', numpy.array([1, 2, 3]),
                                           numpy.array([.1, .3]))

        self.assertEqual(6, A.number_of_observations())