if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-rep", "--rep_path", help="directory containing (hmm) word representations files") parser.add_argument("-infile", help="file with sentences for decoding. Conll format for parsed sentences.") parser.add_argument("-outfile", help="file to write posteriors to") parser.add_argument("--use_lemmas", action='store_true', default=False, help="") parser.add_argument("--synfunc", action='store_true', default=False, help="Word representations model is sensitive to syntactic functions. Use flag when using model with names like \"hmm_en_rel_...\".") args = parser.parse_args() path = args.rep_path infile = args.infile # obtain model parameters n_states, n_obs, _, _, _, omit_class_cond, omit_emis_cond = read_params_from_path(path) lemmas = args.use_lemmas eval_spec_rel = args.synfunc lr = False # load model params_fixed = (np.load("{}ip.npy".format(path)), np.load("{}tp.npy".format(path)), np.load("{}fp.npy".format(path)), np.load("{}ep.npy".format(path))) # prepare sents for decoding sents = ConllCorpus(infile, howbig=1000000, lemmas=lemmas, eval_spec_rels=eval_spec_rel, dirname=path, lr=lr) sents.prepare_trees()
import numpy as np from eval.ner.PrepareHmmRep import read_params_from_path from hmrtm import HMRTM from readers.conll_corpus import ConllCorpus if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-rep", "--rep_path", help="directory containing (hmm) word representations files") parser.add_argument("--use_lemmas", action='store_true', default=False, help="") args = parser.parse_args() path = args.rep_path posttype_f = "{}posttype_cumul.npy".format(path) n_states, n_obs, n_sent, n_toks, corpus_file, omit_class_cond, omit_emis_cond = read_params_from_path(path) lemmas = args.use_lemmas eval_spec_rel = True lr = False params_fixed = (np.load("{}ip.npy".format(path)), np.load("{}tp.npy".format(path)), np.load("{}fp.npy".format(path)), np.load("{}ep.npy".format(path))) dataset = ConllCorpus("{}".format(corpus_file), howbig=n_sent, lemmas=lemmas, eval_spec_rels=eval_spec_rel, dirname=path, lr=lr) dataset.train = dataset.prepare_trees_gen() # generator h = HMRTM(n_states, n_obs, R=len(dataset.r_dict), params=params_fixed, writeout=False, dirname=path, omit_class_cond=omit_class_cond, omit_emis_cond=omit_emis_cond)
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-rep", "--rep_path", help="directory containing (hmm) word representations files") parser.add_argument("--use_lemmas", action='store_true', default=False, help="") args = parser.parse_args() path = args.rep_path posttype_f = "{}posttype_cumul.npy".format(path) n_states, n_obs, n_sent, n_toks, corpus_file, omit_class_cond, omit_emis_cond = read_params_from_path( path) lemmas = args.use_lemmas eval_spec_rel = True lr = False params_fixed = (np.load("{}ip.npy".format(path)), np.load("{}tp.npy".format(path)), np.load("{}fp.npy".format(path)), np.load("{}ep.npy".format(path))) dataset = ConllCorpus("{}".format(corpus_file), howbig=n_sent, lemmas=lemmas, eval_spec_rels=eval_spec_rel, dirname=path, lr=lr)