def train(logdir, hparams): model = Model(mode="train1", hparams=hparams) # Loss loss_op = model.loss_net1() # Accuracy acc_op = model.acc_net1() # Training Scheme global_step = tf.Variable(0, name='global_step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.Train1.lr) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1') train_op = optimizer.minimize(loss_op, global_step=global_step, var_list=var_list) # Summary # for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1'): # tf.summary.histogram(v.name, v) tf.summary.scalar('net1/train/loss', loss_op) tf.summary.scalar('net1/train/acc', acc_op) summ_op = tf.summary.merge_all() #session_conf = tf.ConfigProto( # gpu_options=tf.GPUOptions( # allow_growth=True, # ), #) session_conf=tf.ConfigProto() session_conf.gpu_options.per_process_gpu_memory_fraction=0.9 # Training with tf.Session(config=session_conf) as sess: # Load trained model sess.run(tf.global_variables_initializer()) model.load(sess, 'train1', logdir=logdir) writer = tf.summary.FileWriter(logdir, sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for epoch in range(1, hparams.Train1.num_epochs + 1): for step in range(model.num_batch): mfcc, ppg = get_batch(model.mode, model.batch_size) sess.run(train_op, feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg}) # Write checkpoint files at every epoch summ, gs = sess.run([summ_op, global_step], feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg}) if epoch % hparams.Train1.save_per_epoch == 0: tf.train.Saver().save(sess, '{}/epoch_{}_step_{}'.format(logdir, epoch, gs)) # Write eval accuracy at every epoch with tf.Graph().as_default(): eval1.eval(logdir=logdir, hparams=hparams) writer.add_summary(summ, global_step=gs) writer.close() coord.request_stop() coord.join(threads)
def train(logdir='logdir/default/train1', queue=True): model = Model(mode="train1", batch_size=hp.Train1.batch_size, queue=queue) # Loss loss_op = model.loss_net1() # Accuracy acc_op = model.acc_net1() # Training Scheme global_step = tf.Variable(0, name='global_step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=hp.Train1.lr) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1') train_op = optimizer.minimize(loss_op, global_step=global_step, var_list=var_list) # Summary for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1'): tf.summary.histogram(v.name, v) tf.summary.scalar('net1/train/loss', loss_op) tf.summary.scalar('net1/train/acc', acc_op) summ_op = tf.summary.merge_all() session_conf = tf.ConfigProto( gpu_options=tf.GPUOptions( allow_growth=True, ), ) # Training with tf.Session(config=session_conf) as sess: # Load trained model sess.run(tf.global_variables_initializer()) model.load(sess, 'train1', logdir=logdir) writer = tf.summary.FileWriter(logdir, sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for epoch in range(1, hp.Train1.num_epochs + 1): for step in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'): if queue: sess.run(train_op) else: mfcc, ppg = get_batch(model.mode, model.batch_size) #print("MFCC shape: {}".format(mfcc.shape)) #print("types: {} and {}".format(mfcc.dtype, ppg.dtype)) #print("PPG shape: {}".format(ppg.shape)) sess.run(train_op, feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg}) # Write checkpoint files at every epoch summ, gs = sess.run([summ_op, global_step], feed_dict={model.x_mfcc: mfcc, model.y_ppgs: ppg}) # There was a problem where in certain environments placeholder must be fed for these ops if epoch % hp.Train1.save_per_epoch == 0: tf.train.Saver().save(sess, '{}/epoch_{}_step_{}'.format(logdir, epoch, gs)) # Write eval accuracy at every epoch with tf.Graph().as_default(): eval1.eval(logdir=logdir, queue=False) writer.add_summary(summ, global_step=gs) writer.close() coord.request_stop() coord.join(threads)
def train(logdir='logdir/default/train1', queue=True): model = Model(mode="train1", batch_size=hp.Train1.batch_size, queue=queue) # Loss loss_op = model.loss_net1() # Accuracy acc_op = model.acc_net1() # Training Scheme global_step = tf.Variable(0, name='global_step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=hp.Train1.lr) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1') train_op = optimizer.minimize(loss_op, global_step=global_step, var_list=var_list) # Summary for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net1'): tf.summary.histogram(v.name, v) tf.summary.scalar('net1/train/loss', loss_op) tf.summary.scalar('net1/train/acc', acc_op) summ_op = tf.summary.merge_all() session_conf = tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True, ), ) # Training with tf.Session(config=session_conf) as sess: # Load trained model sess.run(tf.global_variables_initializer()) model.load(sess, 'train1', logdir=logdir) writer = tf.summary.FileWriter(logdir, sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for epoch in range(1, hp.Train1.num_epochs + 1): for step in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'): if queue: sess.run(train_op) else: mfcc, ppg = get_batch(model.mode, model.batch_size) #print("MFCC shape: {}".format(mfcc.shape)) #print("types: {} and {}".format(mfcc.dtype, ppg.dtype)) #print("PPG shape: {}".format(ppg.shape)) sess.run(train_op, feed_dict={ model.x_mfcc: mfcc, model.y_ppgs: ppg }) # Write checkpoint files at every epoch summ, gs = sess.run([summ_op, global_step], feed_dict={ model.x_mfcc: mfcc, model.y_ppgs: ppg }) # There was a problem where in certain environments placeholder must be fed for these ops if epoch % hp.Train1.save_per_epoch == 0: tf.train.Saver().save( sess, '{}/epoch_{}_step_{}'.format(logdir, epoch, gs)) # Write eval accuracy at every epoch with tf.Graph().as_default(): eval1.eval(logdir=logdir, queue=False) writer.add_summary(summ, global_step=gs) writer.close() coord.request_stop() coord.join(threads)
from random import * from eval1 import eval print("Welcome to Freaking Math") x = randint(0, 10) y = randint(0, 10) op_list = ["+", "-", "*", "/"] op = choice(op_list) result = eval(x, y, op) var = randint(-1, 1) fake_result = result + var print("{0} {1} {2} = {3}".format(x, op, y, fake_result)) answer = input("Y/N ").upper() # Using upper to limit conditional final = 0 if result == fake_result and answer == "Y": final = True elif result == fake_result and answer == "N": final = False elif result != fake_result and answer == "Y": final = False elif result != fake_result and answer == "N": final = True