示例#1
0
def train_bayes(training_generator):
    svi, model, guide = get_pyro_model(return_all=True)

    loss_hist = []
    for e in range(EPOCHS):
        losses = []
        for x_data, y_data in tqdm(training_generator):
            losses.append(svi.step(x_data, y_data))

        #test_model(model(x_data,y_data), model(x_data,y_data), Trace_ELBO())

        loss_hist.append(np.mean(losses))
        print(f"epoch {e}/{EPOCHS} :", loss_hist[-1])

    trace = poutine.trace(model).get_trace(x_data, y_data)
    trace.compute_log_prob(
    )  # optional, but allows printing of log_prob shapes
    print(trace.format_shapes())

    plt.plot(loss_hist)
    plt.yscale('log')
    plt.title("ELBO")
    plt.xlabel("step")
    plt.ylabel("Epoch loss")

    trace_summary(svi, model, x_data, y_data)

    for name, value in pyro.get_param_store().items():
        print(name, pyro.param(name))
示例#2
0
        #test_model(model(x_data,y_data), model(x_data,y_data), Trace_ELBO())

        loss_hist.append(np.mean(losses))
        print(f"epoch {e}/{EPOCHS} :", loss_hist[-1])

    trace = poutine.trace(model).get_trace(x_data, y_data)
    trace.compute_log_prob()  # optional, but allows printing of log_prob shapes
    print(trace.format_shapes())

    plt.plot(loss_hist)
    plt.yscale('log')
    plt.title("ELBO")
    plt.xlabel("step")
    plt.ylabel("Epoch loss")

    df = trace_summary(svi, model, x_data, y_data)

    for name, value in pyro.get_param_store().items():
        print(name, pyro.param(name))

    # plot the gaussian data
    # g = guide(None, None)
    # p = g(x_data)
    # plt.figure()
    # pp = p.cpu().detach().numpy()[:,0]
    # yy = y_data.cpu().detach().numpy()[:,0]
    # ss = y_data.cpu().detach().numpy()[:,1]
    # i = np.linspace(.1, 1, 30)
    # for x in x_data.cpu().detach().numpy():
    #   plt.plot(i, x) 
    # plt.plot(pp, .25*np.ones_like(pp),'o')