def test_random_seed(X_y_binary):
    X, y = X_y_binary

    automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=5, random_seed=0, n_jobs=1)
    automl.search()

    automl_1 = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=5, random_seed=0, n_jobs=1)
    automl_1.search()
    assert automl.rankings.equals(automl_1.rankings)
def test_callback(X_y_binary):
    X, y = X_y_binary

    counts = {
        "start_iteration_callback": 0,
        "add_result_callback": 0,
    }

    def start_iteration_callback(pipeline_class,
                                 parameters,
                                 automl_obj,
                                 counts=counts):
        counts["start_iteration_callback"] += 1

    def add_result_callback(results,
                            trained_pipeline,
                            automl_obj,
                            counts=counts):
        counts["add_result_callback"] += 1

    max_iterations = 3
    automl = AutoMLSearch(X_train=X,
                          y_train=y,
                          problem_type='binary',
                          objective=Precision(),
                          max_iterations=max_iterations,
                          start_iteration_callback=start_iteration_callback,
                          add_result_callback=add_result_callback,
                          n_jobs=1)
    automl.search()

    assert counts["start_iteration_callback"] == len(
        get_estimators('binary')) + 1
    assert counts["add_result_callback"] == max_iterations
def test_init_objective(X_y_binary):
    X, y = X_y_binary
    automl = AutoMLSearch(X_train=X,
                          y_train=y,
                          problem_type='binary',
                          objective=Precision(),
                          max_iterations=1)
    assert isinstance(automl.objective, Precision)
    automl = AutoMLSearch(X_train=X,
                          y_train=y,
                          problem_type='binary',
                          objective='Precision',
                          max_iterations=1)
    assert isinstance(automl.objective, Precision)
示例#4
0
def test_precision_binary():
    obj = Precision()
    assert obj.score(np.array([1, 1, 1, 1, 1, 1]),
                     np.array([0, 0, 0, 1, 1, 1])) == pytest.approx(1.0, EPS)

    assert obj.score(np.array([0, 0, 0, 1, 1, 1]),
                     np.array([1, 1, 1, 1, 1, 1])) == pytest.approx(0.5, EPS)

    assert obj.score(np.array([0, 0, 0, 0, 0, 0]),
                     np.array([1, 1, 1, 1, 1, 1])) == pytest.approx(0.0, EPS)

    assert obj.score(np.array([0, 0, 0, 0, 0, 0]),
                     np.array([0, 0, 0, 0, 0, 0])) == pytest.approx(0.0, EPS)