def do_one_demo(args, config, hdf5_file, model, sample_num, cuda):
    depth_grp = hdf5_file['val']['disparity']
    # Create output directory

    if not args.no_save:
        base_dir = os.path.join(config['PATH']['output_dir'], 'warped')
        if not os.path.isdir(base_dir):
            pathlib.Path(base_dir).mkdir(parents=True, exist_ok=True)
        save_dir = get_sub_dir_for_saving(base_dir)

    model.eval()
    SNUM = sample_num
    start_time = time.time()
    print("Working on image", SNUM)
    depth_images = torch.squeeze(
        torch.tensor(depth_grp['images'][SNUM], dtype=torch.float32))

    colour_grp = hdf5_file['val']['colour']
    colour_images = torch.tensor(colour_grp['images'][SNUM],
                                 dtype=torch.float32)

    sample = {
        'depth': depth_images,
        'colour': colour_images,
        'grid_size': depth_images.shape[0]
    }

    warped = data_transform.transform_to_warped(sample)
    im_input = warped['inputs'].unsqueeze_(0)

    if cuda:
        im_input = im_input.cuda()

    output = model(im_input)
    output += im_input[:, :-1]
    output = torch.clamp(output, 0.0, 1.0)

    time_taken = time.time() - start_time
    print("Time taken was {:.0f}s".format(time_taken))
    grid_size = 64

    psnr_accumulator = (0, 0, 0)
    ssim_accumulator = (0, 0, 0)

    if not args.no_save:
        print("Saving output to", save_dir)
        no_cnn_dir = os.path.join(save_dir, "no_cnn")
        cnn_dir = os.path.join(save_dir, "cnn")
        os.mkdir(cnn_dir)
        os.mkdir(no_cnn_dir)

    output = torch.squeeze(denormalise_lf(output))
    output = data_transform.torch_unstack(output)
    cpu_output = np.around(output.cpu().detach().numpy()).astype(np.uint8)

    if (not args.no_eval) or args.get_diff:
        ground_truth = np.around(denormalise_lf(colour_images).numpy()).astype(
            np.uint8)
    grid_len = int(math.sqrt(grid_size))
    for i in range(grid_size):
        row, col = i // grid_len, i % grid_len

        if not args.no_save:
            file_name = 'Colour{}{}.png'.format(row, col)
            save_location = os.path.join(cnn_dir, file_name)
            if i == 0:
                print("Saving images of size ", cpu_output[i].shape)
            image_warping.save_array_as_image(cpu_output[i], save_location)

        if args.get_diff and not args.no_save:
            colour = ground_truth[i]
            diff = image_warping.get_diff_image(colour, cpu_output[i])
            #diff = get_diff_image_floatint(res, colour)
            file_name = 'Diff{}{}.png'.format(row, col)
            save_location = os.path.join(cnn_dir, file_name)
            image_warping.save_array_as_image(diff, save_location)

        if not args.no_eval:
            img = ground_truth[i]

            if not args.no_save:
                file_name = 'GT_Colour{}{}.png'.format(row, col)
                save_location = os.path.join(save_dir, file_name)
                image_warping.save_array_as_image(img, save_location)
            psnr = evaluate.my_psnr(cpu_output[i], img)
            ssim = evaluate.ssim(cpu_output[i], img)
            psnr_accumulator = welford.update(psnr_accumulator, psnr)
            ssim_accumulator = welford.update(ssim_accumulator, ssim)

    psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator)
    ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator)
    print("For cnn, psnr average {:5f}, stddev {:5f}".format(
        psnr_mean, math.sqrt(psnr_var)))
    print("For cnn, ssim average {:5f}, stddev {:5f}".format(
        ssim_mean, math.sqrt(ssim_var)))
    psnr1 = psnr_mean
    ssim1 = ssim_mean

    psnr_accumulator = (0, 0, 0)
    ssim_accumulator = (0, 0, 0)

    psnr2, ssim2 = 0, 0
    if args.no_cnn:
        squeeze_input = torch.squeeze(denormalise_lf(im_input[:, :-1]))
        squeeze_input = data_transform.torch_unstack(squeeze_input)
        cpu_input = np.around(squeeze_input.cpu().detach().numpy()).astype(
            np.uint8)
        for i in range(grid_size):
            row, col = i // grid_len, i % grid_len

            if not args.no_save:
                file_name = 'Colour{}{}.png'.format(row, col)
                save_location = os.path.join(no_cnn_dir, file_name)
                if i == 0:
                    print("Saving images of size ", cpu_input[i].shape)
                image_warping.save_array_as_image(cpu_input[i], save_location)

            if args.get_diff and not args.no_save:
                colour = ground_truth[i]
                diff = image_warping.get_diff_image(colour, cpu_output[i])
                #diff = get_diff_image_floatint(res, colour)
                file_name = 'Diff{}{}.png'.format(row, col)
                save_location = os.path.join(no_cnn_dir, file_name)
                image_warping.save_array_as_image(diff, save_location)

            if not args.no_eval:
                img = ground_truth[i]
                psnr = evaluate.my_psnr(cpu_input[i], img)
                ssim = evaluate.ssim(cpu_input[i], img)
                psnr_accumulator = welford.update(psnr_accumulator, psnr)
                ssim_accumulator = welford.update(ssim_accumulator, ssim)

        psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator)
        ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator)
        print("For no cnn, psnr average {:5f}, stddev {:5f}".format(
            psnr_mean, math.sqrt(psnr_var)))
        print("For no cnn, ssim average {:5f}, stddev {:5f}".format(
            ssim_mean, math.sqrt(ssim_var)))
        psnr2, ssim2 = psnr_mean, ssim_mean

    return psnr1, ssim1, psnr2, ssim2
示例#2
0
def main(args, config, sample_index):
    cuda = cnn_utils.check_cuda(config)
    model = cnn_utils.load_model_and_weights(args, config)
    if cuda:
        model = model.cuda()

    model.eval()

    # Create output directory
    base_dir = os.path.join(config['PATH']['output_dir'], 'warped')
    if not os.path.isdir(base_dir):
        pathlib.Path(base_dir).mkdir(parents=True, exist_ok=True)
    save_dir = get_sub_dir_for_saving(base_dir)

    # TODO if GT is available, can get diff images
    start_time = time.time()
    file_path = os.path.join(config['PATH']['hdf5_dir'],
                             config['PATH']['hdf5_name'])
    with h5py.File(file_path, mode='r', libver='latest') as hdf5_file:
        depth_grp = hdf5_file['val']['disparity']
        SNUM = sample_index
        depth_images = torch.squeeze(
            torch.tensor(depth_grp['images'][SNUM], dtype=torch.float32))

        colour_grp = hdf5_file['val']['colour']
        colour_images = torch.tensor(colour_grp['images'][SNUM],
                                     dtype=torch.float32)

        sample = {
            'depth': depth_images,
            'colour': colour_images,
            'grid_size': depth_images.shape[0]
        }

        warped = data_transform.transform_to_warped(sample)
        im_input = warped['inputs'].unsqueeze_(0)

        if cuda:
            im_input = im_input.cuda()

        output = model(im_input)
        output += im_input[:, :-1]
        output = torch.clamp(output, 0.0, 1.0)

        time_taken = time.time() - start_time
        print("Time taken was {:.0f}s".format(time_taken))
        grid_size = 64

        psnr_accumulator = (0, 0, 0)
        ssim_accumulator = (0, 0, 0)

        print("Saving output to", save_dir)
        if args.no_cnn:
            no_cnn_dir = os.path.join(save_dir, "no_cnn")
            cnn_dir = os.path.join(save_dir, "cnn")
            os.mkdir(cnn_dir)
            os.mkdir(no_cnn_dir)

        output = torch.squeeze(denormalise_lf(output))
        output = data_transform.torch_unstack(output)
        cpu_output = np.around(output.cpu().detach().numpy()).astype(np.uint8)

        if (not args.no_eval) or args.get_diff:
            ground_truth = np.around(
                denormalise_lf(colour_images).numpy()).astype(np.uint8)
        grid_len = int(math.sqrt(grid_size))
        for i in range(grid_size):
            row, col = i // grid_len, i % grid_len

            file_name = 'Colour{}{}.png'.format(row, col)
            save_location = os.path.join(cnn_dir, file_name)
            if i == 0:
                print("Saving images of size ", cpu_output[i].shape)
            image_warping.save_array_as_image(cpu_output[i], save_location)

            if args.get_diff:
                colour = ground_truth[i]
                diff = image_warping.get_diff_image(colour, cpu_output[i])
                #diff = get_diff_image_floatint(res, colour)
                file_name = 'Diff{}{}.png'.format(row, col)
                save_location = os.path.join(cnn_dir, file_name)
                image_warping.save_array_as_image(diff, save_location)

            if not args.no_eval:
                img = ground_truth[i]
                file_name = 'GT_Colour{}{}.png'.format(row, col)
                save_location = os.path.join(save_dir, file_name)
                image_warping.save_array_as_image(img, save_location)
                psnr = evaluate.my_psnr(cpu_output[i], img)
                ssim = evaluate.ssim(cpu_output[i], img)
                psnr_accumulator = welford.update(psnr_accumulator, psnr)
                ssim_accumulator = welford.update(ssim_accumulator, ssim)

        psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator)
        ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator)
        print("For cnn, psnr average {:5f}, stddev {:5f}".format(
            psnr_mean, math.sqrt(psnr_var)))
        print("For cnn, ssim average {:5f}, stddev {:5f}".format(
            ssim_mean, math.sqrt(ssim_var)))

        psnr_accumulator = (0, 0, 0)
        ssim_accumulator = (0, 0, 0)

        if args.no_cnn:
            squeeze_input = torch.squeeze(denormalise_lf(im_input[:, :-1]))
            squeeze_input = data_transform.torch_unstack(squeeze_input)
            cpu_input = np.around(squeeze_input.cpu().detach().numpy()).astype(
                np.uint8)
            for i in range(grid_size):
                row, col = i // grid_len, i % grid_len

                file_name = 'Colour{}{}.png'.format(row, col)
                save_location = os.path.join(no_cnn_dir, file_name)
                if i == 0:
                    print("Saving images of size ", cpu_input[i].shape)
                image_warping.save_array_as_image(cpu_input[i], save_location)

                if args.get_diff:
                    colour = ground_truth[i]
                    diff = image_warping.get_diff_image(colour, cpu_output[i])
                    #diff = get_diff_image_floatint(res, colour)
                    file_name = 'Diff{}{}.png'.format(row, col)
                    save_location = os.path.join(no_cnn_dir, file_name)
                    image_warping.save_array_as_image(diff, save_location)

                if not args.no_eval:
                    img = ground_truth[i]
                    psnr = evaluate.my_psnr(cpu_input[i], img)
                    ssim = evaluate.ssim(cpu_input[i], img)
                    psnr_accumulator = welford.update(psnr_accumulator, psnr)
                    ssim_accumulator = welford.update(ssim_accumulator, ssim)

            psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator)
            ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator)
            print("For no cnn, psnr average {:5f}, stddev {:5f}".format(
                psnr_mean, math.sqrt(psnr_var)))
            print("For no cnn, ssim average {:5f}, stddev {:5f}".format(
                ssim_mean, math.sqrt(ssim_var)))

        #Ground truth possible
        """
示例#3
0
def main(args, config):
    hdf5_path = os.path.join(config['PATH']['output_dir'],
                             config['PATH']['hdf5_name'])
    #warp_type = WARP_TYPE.TORCH_GPU
    warp_type = args.warp_type
    print("Performing image warping using {}".format(warp_type))
    with h5py.File(hdf5_path, mode='r', libver='latest') as hdf5_file:
        grid_size = 64
        grid_one_way = 8
        sample_index = grid_size // 2 + (grid_one_way // 2)
        depth_grp = hdf5_file['val']['disparity']

        overall_psnr_accum = (0, 0, 0)
        overall_ssim_accum = (0, 0, 0)
        for sample_num in range(args.nSamples):
            SNUM = sample_num
            print("Working on image", SNUM)
            depth_image = np.squeeze(depth_grp['images'][SNUM, sample_index])

            #Hardcoded some values for now
            colour_grp = hdf5_file['val']['colour']
            colour_image = colour_grp['images'][SNUM, sample_index]

            #Can later expand like 0000 if needed
            base_dir = os.path.join(config['PATH']['output_dir'], 'warped')
            get_diff = (config['DEFAULT']['should_get_diff'] == 'True')

            if not args.no_save:
                save_dir = get_sub_dir_for_saving(base_dir)
                print("Saving images to {}".format(save_dir))
            else:
                print("Not saving images, only evaluating output")

            psnr_accumulator = (0, 0, 0)
            ssim_accumulator = (0, 0, 0)

            start_time = time()
            if warp_type == WARP_TYPE.TORCH_ALL:
                final = depth_rendering(colour_image, depth_image)
                print("Time taken was {:4f}".format(time() - start_time))

            if warp_type == WARP_TYPE.TORCH_GPU:
                final = depth_rendering_gpu(colour_image, depth_image).cpu()
                print("Time taken was {:4f}".format(time() - start_time))

            ref_pos = np.asarray([4, 4])
            print("Reference position is ({}, {})".format(*ref_pos))
            for i in range(8):
                for j in range(8):
                    if warp_type == WARP_TYPE.FW:
                        res = fw_warp_image(colour_image, depth_image, ref_pos,
                                            np.asarray([i, j]))
                    elif warp_type == WARP_TYPE.SK:
                        res = sk_warp(colour_image,
                                      depth_image,
                                      ref_pos,
                                      np.asarray([i, j]),
                                      preserve_range=True)
                    elif warp_type == WARP_TYPE.SLOW:
                        res = slow_fw_warp_image(colour_image, depth_image,
                                                 ref_pos, np.asarray([i, j]))
                    elif warp_type == WARP_TYPE.TORCH:
                        res = np.around(
                            torch_warp(colour_image, depth_image, ref_pos,
                                       np.asarray([i, j])).numpy()).astype(
                                           np.uint8)
                    elif (warp_type == WARP_TYPE.TORCH_ALL
                          or warp_type == WARP_TYPE.TORCH_GPU):
                        res = np.around(final[i * 8 + j].numpy()).astype(
                            np.uint8)

                    if not args.no_save:
                        file_name = 'Warped_Colour{}{}.png'.format(i, j)
                        save_location = os.path.join(save_dir, file_name)
                        save_array_as_image(res, save_location)
                        idx = i * 8 + j
                        file_name = 'GT_Colour{}{}.png'.format(i, j)
                        save_location = os.path.join(save_dir, file_name)
                        save_array_as_image(colour_grp['images'][SNUM][idx],
                                            save_location)
                        if get_diff:
                            colour = colour_grp['images'][SNUM, i * 8 + j]
                            diff = get_diff_image(colour, res)
                            #diff = get_diff_image_floatint(res, colour)
                            file_name = 'Diff{}{}.png'.format(i, j)
                            save_location = os.path.join(save_dir, file_name)
                            save_array_as_image(diff, save_location)
                    psnr = evaluate.my_psnr(
                        res, colour_grp['images'][SNUM, i * 8 + j])
                    ssim = evaluate.ssim(res, colour_grp['images'][SNUM,
                                                                   i * 8 + j])
                    print("Position ({}, {}): PSNR {:4f}, SSIM {:4f}".format(
                        i, j, psnr, ssim))
                    psnr_accumulator = welford.update(psnr_accumulator, psnr)
                    ssim_accumulator = welford.update(ssim_accumulator, ssim)

            psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator)
            ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator)
            print("\npsnr average {:5f}, stddev {:5f}".format(
                psnr_mean, math.sqrt(psnr_var)))
            print("ssim average {:5f}, stddev {:5f}".format(
                ssim_mean, math.sqrt(ssim_var)))
            overall_psnr_accum = welford.update(overall_psnr_accum, psnr_mean)
            overall_ssim_accum = welford.update(overall_ssim_accum, ssim_mean)
        if args.nSamples > 1:
            psnr_mean, psnr_var, _ = welford.finalize(overall_psnr_accum)
            ssim_mean, ssim_var, _ = welford.finalize(overall_ssim_accum)
            print("\nOverall psnr average {:5f}, stddev {:5f}".format(
                psnr_mean, math.sqrt(psnr_var)))
            print("Overall ssim average {:5f}, stddev {:5f}".format(
                ssim_mean, math.sqrt(ssim_var)))