def LoadMovieLensData(): ml = MovieLens() print("Loading movie ratings...") data = ml.loadMovieLensLatestSmall() print( "\nComputing movie popularity ranks so we can measure novelty later..." ) rankings = ml.getPopularityRanks() return (ml, data, rankings) np.random.seed(0) random.seed(0) # Load up common data set for the recommender algorithms (ml, evaluationData, rankings) = LoadMovieLensData() # Construct an Evaluator to, you know, evaluate them evaluator = Evaluator(evaluationData, rankings) contentKNN = ContentKNNAlgorithm() evaluator.AddAlgorithm(contentKNN, "ContentKNN") # Just make random recommendations Random = NormalPredictor() evaluator.AddAlgorithm(Random, "Random") evaluator.Evaluate(True) evaluator.SampleTopNRecs(ml)
return (azr, data, rankings) # Load up common data set for the recommender algorithms (ml, evaluationData, rankings) = LoadMovieLensData() #(azr,evaluationData, rankings) = LoadAmazonData() # Construct an Evaluator to, you know, evaluate them ######### our evaluation code ######### evaluator = Evaluator(evaluationData, rankings, doTopN=True) SVDAlgorithm = SVDpp() evaluator.AddAlgorithm(SVDAlgorithm, "SVD++") #SVDppAlgorithm = SVDpp() #evaluator.AddAlgorithm(SVDppAlgorithm, "SVD++") evaluator.Evaluate() #evaluator.SampleTopNRecs(ml) ### buit-in fonction for evaluation #######" #algo = SVD() # Run 3-fold cross-validation and print results #cross_validate(algo, evaluationData, measures=['RMSE', 'MAE'], cv=3, verbose=True) # Retrieve the trainset. #trainset = evaluationData.build_full_trainset()