def test_subtract_dark(): cal_dict = sort_ibsen_by_int(DIR) REFERENCE = copy.deepcopy(cal_dict[5.0]['reference']['tdata']) DARK = copy.deepcopy(cal_dict[5.0]['darkcurrent']['tdata']) SINGLE_SPECTRA = copy.deepcopy(cal_dict[5.0]['reference']['tdata'][0]) REFERENCE_MEAN = np.mean(REFERENCE, axis=0) DARK_MEAN = np.mean(DARK, axis=0) REFERENCE_CORRECTED = REFERENCE_MEAN - DARK_MEAN SINGLE_SPECTRA_CORRECTED = SINGLE_SPECTRA - DARK_MEAN cal_dict = subtract_dark(cal_dict) assert cal_dict[5.0]['reference']['darkcurrent_corrected'] == True assert_array_equal(cal_dict[5.0]['reference']['mean'], REFERENCE_CORRECTED) assert_array_equal(cal_dict[5.0]['reference']['tdata'][0], SINGLE_SPECTRA_CORRECTED) assert_array_equal(cal_dict[5.0]['reference']['data'][:,0], SINGLE_SPECTRA_CORRECTED)
def prepare_data(): corrected_calc = subtract_dark(sort_ibsen_by_int(DIR)) return corrected_calc