示例#1
0
def do_restore(network, label_type, num_stack, num_skip, epoch=None):
    """Restore model.
    Args:
        network: model to restore
        label_type: phone or character o kanji
        num_stack: int, the number of frames to stack
        num_skip: int, the number of frames to skip
        epoch: epoch to restore
    """
    # Load dataset
    eval1_data = DataSet(data_type='eval1', label_type=label_type,
                         num_stack=num_stack, num_skip=num_skip,
                         is_sorted=False, is_progressbar=True)
    eval2_data = DataSet(data_type='eval2', label_type=label_type,
                         num_stack=num_stack, num_skip=num_skip,
                         is_sorted=False, is_progressbar=True)
    eval3_data = DataSet(data_type='eval3', label_type=label_type,
                         num_stack=num_stack, num_skip=num_skip,
                         is_sorted=False, is_progressbar=True)

    # Define model
    network.define()

    # Add to the graph each operation
    decode_op = network.decoder(decode_type='beam_search',
                                beam_width=20)
    posteriors_op = network.posteriors(decode_op)
    per_op = network.ler(decode_op)

    # Create a saver for writing training checkpoints
    saver = tf.train.Saver()

    with tf.Session() as sess:
        ckpt = tf.train.get_checkpoint_state(network.model_dir)

        # If check point exists
        if ckpt:
            # Use last saved model
            model_path = ckpt.model_checkpoint_path
            if epoch is not None:
                model_path = model_path.split('/')[:-1]
                model_path = '/'.join(model_path) + '/model.ckpt-' + str(epoch)
            saver.restore(sess, model_path)
            print("Model restored: " + model_path)
        else:
            raise ValueError('There are not any checkpoints.')

        if label_type in ['character', 'kanji']:
            print('■eval1 Evaluation:■')
            do_eval_cer(session=sess, decode_op=decode_op, network=network,
                        dataset=eval1_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)
            print('■eval2 Evaluation:■')
            do_eval_cer(session=sess, decode_op=decode_op, network=network,
                        dataset=eval2_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)
            print('■eval3 Evaluation:■')
            do_eval_cer(session=sess, decode_op=decode_op, network=network,
                        dataset=eval3_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)
        else:
            print('■eval1 Evaluation:■')
            do_eval_per(session=sess, per_op=per_op, network=network,
                        dataset=eval1_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)
            print('■eval2 Evaluation:■')
            do_eval_per(session=sess, per_op=per_op, network=network,
                        dataset=eval2_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)
            print('■eval3 Evaluation:■')
            do_eval_per(session=sess, per_op=per_op, network=network,
                        dataset=eval3_data, eval_batch_size=network.batch_size,
                        is_progressbar=True)

        # Visualize
        decode_test(session=sess, decode_op=decode_op, network=network,
                    dataset=eval1_data, label_type=label_type)
示例#2
0
def do_train(network, optimizer, learning_rate, batch_size, epoch_num, label_type, num_stack, num_skip):
    """Run training.
    Args:
        network: network to train
        optimizer: string, the name of optimizer. ex.) adam, rmsprop
        learning_rate: initial learning rate
        batch_size: size of mini batch
        epoch_num: epoch num to train
        label_type: phone39 or phone48 or phone61 or character
        num_stack: int, the number of frames to stack
        num_skip: int, the number of frames to skip
    """
    # Load dataset
    train_data = DataSet(data_type='train', label_type=label_type,
                         num_stack=num_stack, num_skip=num_skip,
                         is_sorted=True)
    if label_type == 'character':
        dev_data = DataSet(data_type='dev', label_type='character',
                           num_stack=num_stack, num_skip=num_skip,
                           is_sorted=False)
        test_data = DataSet(data_type='test', label_type='character',
                            num_stack=num_stack, num_skip=num_skip,
                            is_sorted=False)
    else:
        dev_data = DataSet(data_type='dev', label_type='phone39',
                           num_stack=num_stack, num_skip=num_skip,
                           is_sorted=False)
        test_data = DataSet(data_type='test', label_type='phone39',
                            num_stack=num_stack, num_skip=num_skip,
                            is_sorted=False)

    # Tell TensorFlow that the model will be built into the default graph
    with tf.Graph().as_default():

        # Define model
        network.define()
        # NOTE: define model under tf.Graph()

        # Add to the graph each operation
        loss_op = network.loss()
        train_op = network.train(optimizer=optimizer,
                                 learning_rate_init=learning_rate,
                                 is_scheduled=False)
        decode_op = network.decoder(decode_type='beam_search',
                                    beam_width=20)
        per_op = network.ler(decode_op)

        # Build the summary tensor based on the TensorFlow collection of
        # summaries
        summary_train = tf.summary.merge(network.summaries_train)
        summary_dev = tf.summary.merge(network.summaries_dev)

        # Add the variable initializer operation
        init_op = tf.global_variables_initializer()

        # Create a saver for writing training checkpoints
        saver = tf.train.Saver(max_to_keep=None)

        # Count total parameters
        parameters_dict, total_parameters = count_total_parameters(
            tf.trainable_variables())
        for parameter_name in sorted(parameters_dict.keys()):
            print("%s %d" % (parameter_name, parameters_dict[parameter_name]))
        print("Total %d variables, %s M parameters" %
              (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000)))

        csv_steps = []
        csv_train_loss = []
        csv_dev_loss = []
        # Create a session for running operation on the graph
        with tf.Session() as sess:

            # Instantiate a SummaryWriter to output summaries and the graph
            summary_writer = tf.summary.FileWriter(
                network.model_dir, sess.graph)

            # Initialize parameters
            sess.run(init_op)

            # Train model
            iter_per_epoch = int(train_data.data_num / batch_size)
            if (train_data.data_num / batch_size) != int(train_data.data_num / batch_size):
                iter_per_epoch += 1
            max_steps = iter_per_epoch * epoch_num
            start_time_train = time.time()
            start_time_epoch = time.time()
            start_time_step = time.time()
            error_best = 1
            for step in range(max_steps):

                # Create feed dictionary for next mini batch (train)
                inputs, labels, seq_len, _ = train_data.next_batch(
                    batch_size=batch_size)
                indices, values, dense_shape = list2sparsetensor(labels)
                feed_dict_train = {
                    network.inputs_pl: inputs,
                    network.label_indices_pl: indices,
                    network.label_values_pl: values,
                    network.label_shape_pl: dense_shape,
                    network.seq_len_pl: seq_len,
                    network.keep_prob_input_pl: network.dropout_ratio_input,
                    network.keep_prob_hidden_pl: network.dropout_ratio_hidden,
                    network.lr_pl: learning_rate
                }

                # Create feed dictionary for next mini batch (dev)
                inputs, labels, seq_len, _ = dev_data.next_batch(
                    batch_size=batch_size)
                indices, values, dense_shape = list2sparsetensor(labels)
                feed_dict_dev = {
                    network.inputs_pl: inputs,
                    network.label_indices_pl: indices,
                    network.label_values_pl: values,
                    network.label_shape_pl: dense_shape,
                    network.seq_len_pl: seq_len,
                    network.keep_prob_input_pl: network.dropout_ratio_input,
                    network.keep_prob_hidden_pl: network.dropout_ratio_hidden
                }

                # Update parameters & compute loss
                _, loss_train = sess.run(
                    [train_op, loss_op], feed_dict=feed_dict_train)
                loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev)
                csv_steps.append(step)
                csv_train_loss.append(loss_train)
                csv_dev_loss.append(loss_dev)

                if (step + 1) % 10 == 0:

                    # Change feed dict for evaluation
                    feed_dict_train[network.keep_prob_input_pl] = 1.0
                    feed_dict_train[network.keep_prob_hidden_pl] = 1.0
                    feed_dict_dev[network.keep_prob_input_pl] = 1.0
                    feed_dict_dev[network.keep_prob_hidden_pl] = 1.0

                    # Compute accuracy & update event file
                    ler_train, summary_str_train = sess.run([per_op, summary_train],
                                                            feed_dict=feed_dict_train)
                    ler_dev, summary_str_dev, labels_st = sess.run([per_op, summary_dev, decode_op],
                                                                   feed_dict=feed_dict_dev)
                    summary_writer.add_summary(summary_str_train, step + 1)
                    summary_writer.add_summary(summary_str_dev, step + 1)
                    summary_writer.flush()

                    duration_step = time.time() - start_time_step
                    print('Step %d: loss = %.3f (%.3f) / ler = %.4f (%.4f) (%.3f min)' %
                          (step + 1, loss_train, loss_dev, ler_train, ler_dev, duration_step / 60))
                    sys.stdout.flush()
                    start_time_step = time.time()

                # Save checkpoint and evaluate model per epoch
                if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps:
                    duration_epoch = time.time() - start_time_epoch
                    epoch = (step + 1) // iter_per_epoch
                    print('-----EPOCH:%d (%.3f min)-----' %
                          (epoch, duration_epoch / 60))

                    # Save model (check point)
                    checkpoint_file = join(network.model_dir, 'model.ckpt')
                    save_path = saver.save(
                        sess, checkpoint_file, global_step=epoch)
                    print("Model saved in file: %s" % save_path)

                    if epoch >= 10:
                        start_time_eval = time.time()
                        if label_type == 'character':
                            print('■Dev Data Evaluation:■')
                            error_epoch = do_eval_cer(session=sess,
                                                      decode_op=decode_op,
                                                      network=network,
                                                      dataset=dev_data,
                                                      eval_batch_size=1)

                            if error_epoch < error_best:
                                error_best = error_epoch
                                print('■■■ ↑Best Score (CER)↑ ■■■')

                                print('■Test Data Evaluation:■')
                                do_eval_cer(session=sess, decode_op=decode_op,
                                            network=network, dataset=test_data,
                                            eval_batch_size=1)

                        else:
                            print('■Dev Data Evaluation:■')
                            error_epoch = do_eval_per(session=sess,
                                                      decode_op=decode_op,
                                                      per_op=per_op,
                                                      network=network,
                                                      dataset=dev_data,
                                                      label_type=label_type,
                                                      eval_batch_size=1)

                            if error_epoch < error_best:
                                error_best = error_epoch
                                print('■■■ ↑Best Score (PER)↑ ■■■')

                                print('■Test Data Evaluation:■')
                                do_eval_per(session=sess, decode_op=decode_op,
                                            per_op=per_op, network=network,
                                            dataset=test_data,
                                            label_type=label_type,
                                            eval_batch_size=1)

                        duration_eval = time.time() - start_time_eval
                        print('Evaluation time: %.3f min' %
                              (duration_eval / 60))

                    start_time_epoch = time.time()
                    start_time_step = time.time()

            duration_train = time.time() - start_time_train
            print('Total time: %.3f hour' % (duration_train / 3600))

            # Save train & dev loss
            save_loss(csv_steps, csv_train_loss, csv_dev_loss,
                      save_path=network.model_dir)

            # Training was finished correctly
            with open(join(network.model_dir, 'complete.txt'), 'w') as f:
                f.write('')
示例#3
0
def do_restore(network, label_type, num_stack, num_skip, epoch=None):
    """Restore model.
    Args:
        network: model to restore
        label_type: phone39 or phone48 or phone61
        num_stack: int, the number of frames to stack
        num_skip: int, the number of frames to skip
        epoch: epoch to restore
    """
    # Load dataset
    if label_type == 'character':
        test_data = DataSet(data_type='test',
                            label_type='character',
                            num_stack=num_stack,
                            num_skip=num_skip,
                            is_sorted=False,
                            is_progressbar=True)
    else:
        test_data = DataSet(data_type='test',
                            label_type='phone39',
                            num_stack=num_stack,
                            num_skip=num_skip,
                            is_sorted=False,
                            is_progressbar=True)

    # Define model
    network.define()

    # Add to the graph each operation
    decode_op1, decode_op2 = network.decoder(decode_type='beam_search',
                                             beam_width=20)
    # posteriors_op = network.posteriors(decode_op1)
    per_op1, per_op2 = network.ler(decode_op1, decode_op2)

    # Create a saver for writing training checkpoints
    saver = tf.train.Saver()

    with tf.Session() as sess:
        ckpt = tf.train.get_checkpoint_state(network.model_dir)

        # If check point exists
        if ckpt:
            # Use last saved model
            model_path = ckpt.model_checkpoint_path
            if epoch is not None:
                model_path = model_path.split('/')[:-1]
                model_path = '/'.join(model_path) + '/model.ckpt-' + str(epoch)
            saver.restore(sess, model_path)
            print("Model restored: " + model_path)
        else:
            raise ValueError('There are not any checkpoints.')

        print('Test Data Evaluation:')
        do_eval_cer(session=sess,
                    decode_op=decode_op1,
                    network=network,
                    dataset=test_data,
                    is_progressbar=True,
                    is_multitask=True)

        do_eval_per(session=sess,
                    decode_op=decode_op2,
                    per_op=per_op2,
                    network=network,
                    dataset=test_data,
                    label_type=label_type,
                    is_progressbar=True,
                    is_multitask=True)