def __init__(self, game, iterations=1500, checkpoint_iterations=10, weigth_delay=None, show_progress=True): self.game = game self.iterations = iterations self.checkpoint_iterations = checkpoint_iterations self.weight_delay = weigth_delay self.show_progress = show_progress self.exp = Exploitability(game)
def test_kuhn_action_minus_tilted_agent(self): kuhn_equilibrium, _ = read_strategy_from_file( KUHN_POKER_GAME_FILE_PATH, 'strategies/kuhn.limit.2p-equilibrium.strategy') game = acpc.read_game_file(KUHN_POKER_GAME_FILE_PATH) exploitability = Exploitability(game) tilted_agent_strategy = create_agent_strategy_from_trained_strategy( KUHN_POKER_GAME_FILE_PATH, kuhn_equilibrium, Action.CALL, TiltType.ADD, -0.5) self.assertTrue(is_correct_strategy(tilted_agent_strategy)) self.assertTrue( not is_strategies_equal(kuhn_equilibrium, tilted_agent_strategy)) equilibrium_exploitability = exploitability.evaluate(kuhn_equilibrium) raise_add_tilted_exploitability = exploitability.evaluate( tilted_agent_strategy) self.assertTrue( raise_add_tilted_exploitability > equilibrium_exploitability)
def train_and_show_results(self, test_spec): game_file_path = test_spec['game_file_path'] game = acpc.read_game_file(game_file_path) base_strategy, _ = read_strategy_from_file( game_file_path, test_spec['base_strategy_path']) agents = test_spec['opponent_tilt_types'] num_agents = len(agents) game_name = game_file_path.split('/')[1][:-5] overwrite_figure = test_spec[ 'overwrite_figure'] if 'overwrite_figure' in test_spec else False figure_path = get_new_path( '%s/%s(it:%s-st:%s)' % (FIGURES_FOLDER, game_name, test_spec['training_iterations'], test_spec['checkpoint_iterations']), '.png', overwrite_figure) create_path_dirs(figure_path) exp = Exploitability(game) checkpoints_count = math.ceil( (test_spec['training_iterations'] - 700) / test_spec['checkpoint_iterations']) iteration_counts = np.zeros(checkpoints_count) exploitability_values = np.zeros([num_agents, checkpoints_count]) vs_opponent_utility_values = np.zeros([num_agents, checkpoints_count]) opponent_exploitability_values = np.zeros(num_agents) for i, agent in enumerate(agents): print('%s/%s' % (i + 1, num_agents)) opponent_strategy = create_agent_strategy_from_trained_strategy( game_file_path, base_strategy, agent[0], agent[1], agent[2]) self.assertTrue(is_correct_strategy(opponent_strategy)) if 'print_opponent_strategies' in test_spec and test_spec[ 'print_opponent_strategies']: write_strategy_to_file( opponent_strategy, '%s/%s.strategy' % (os.path.dirname(figure_path), get_agent_name(agent))) if 'print_best_responses' in test_spec and test_spec[ 'print_best_responses']: opponent_best_response = BestResponse(game).solve( opponent_strategy) write_strategy_to_file( opponent_best_response, '%s/%s-best_response.strategy' % (os.path.dirname(figure_path), get_agent_name(agent))) if PLOT_OPPONENT_EXPLOITABILITY: opponent_exploitability = exp.evaluate(opponent_strategy) opponent_exploitability_values[i] = opponent_exploitability print('%s exploitability: %s' % (get_agent_name(agent), opponent_exploitability)) def checkpoint_callback(game_tree, checkpoint_index, iterations): if i == 0: iteration_counts[checkpoint_index] = iterations self.assertTrue(is_correct_strategy(game_tree)) exploitability_values[i, checkpoint_index] = exp.evaluate( game_tree) vs_opponent_utility_values[i, checkpoint_index] = exp.evaluate( opponent_strategy, game_tree) rnr = RestrictedNashResponse(game, opponent_strategy, agent[3]) rnr.train(test_spec['training_iterations'], checkpoint_iterations=test_spec['checkpoint_iterations'], checkpoint_callback=checkpoint_callback) if 'print_response_strategies' in test_spec and test_spec[ 'print_response_strategies']: write_strategy_to_file( rnr.game_tree, '%s-%s-p=%s.strategy' % (figure_path[:-len('.png')], get_agent_name(agent), agent[3])) print('Vs opponent value: %s' % exp.evaluate(opponent_strategy, rnr.game_tree)) print('Exploitability: %s' % exp.evaluate(rnr.game_tree)) plt.figure(dpi=300) ax = plt.subplot(111) for j in range(i + 1): p = plt.plot(iteration_counts, exploitability_values[j], label='%s-p=%s exploitability' % (get_agent_name(agents[j]), agents[j][3]), linewidth=LINE_WIDTH) plt.plot(iteration_counts, vs_opponent_utility_values[j], '--', label='Utility against opponent strategy', color=p[0].get_color(), linewidth=LINE_WIDTH) if PLOT_OPPONENT_EXPLOITABILITY: plt.plot(iteration_counts, np.ones(checkpoints_count) * opponent_exploitability_values[j], ':', label='Opponent exploitability', color=p[0].get_color(), linewidth=LINE_WIDTH) plt.title(test_spec['title']) plt.xlabel('Training iterations') plt.ylabel('Strategy exploitability [mbb/g]') plt.grid() handles, labels = ax.get_legend_handles_labels() new_handles = [] new_labels = [] for i in range(PLOT_COUNT_PER_AGENT): for j in range(i, len(handles), PLOT_COUNT_PER_AGENT): new_handles += [handles[j]] new_labels += [labels[j]] lgd = plt.legend(new_handles, new_labels, loc='upper center', bbox_to_anchor=(0.5, -0.1), ncol=PLOT_COUNT_PER_AGENT) plt.savefig(figure_path, bbox_extra_artists=(lgd, ), bbox_inches='tight') print('Figure written to %s' % figure_path)
class RnrParameterOptimizer(): def __init__(self, game, iterations=1500, checkpoint_iterations=10, weigth_delay=None, show_progress=True): self.game = game self.iterations = iterations self.checkpoint_iterations = checkpoint_iterations self.weight_delay = weigth_delay self.show_progress = show_progress self.exp = Exploitability(game) def train(self, opponent_strategy, exploitability, max_exploitability_delta): result_strategy = GameTreeBuilder( self.game, StrategyTreeNodeProvider()).build_tree() best_exploitability = float('inf') best_exploitability_delta = float('inf') def checkpoint_callback(game_tree, checkpoint_index, iterations): if iterations <= ((3 / 4) * self.iterations): # Make sure the strategy at least partially converged return nonlocal result_strategy nonlocal best_exploitability_delta nonlocal best_exploitability current_exploitability = self.exp.evaluate(game_tree) current_exploitability_delta = abs(current_exploitability - exploitability) if current_exploitability_delta < best_exploitability_delta: if current_exploitability_delta <= max_exploitability_delta: copy_strategy(result_strategy, game_tree) best_exploitability_delta = current_exploitability_delta best_exploitability = current_exploitability iteration = 0 p_low = 0 p_high = 1 if self.show_progress: print() print('Exploitability: %s +- %s' % (exploitability, max_exploitability_delta)) while True: if self.show_progress: iteration += 1 print('Run %s' % iteration) print('Interval: %s - %s' % (p_low, p_high)) p_current = p_low + (p_high - p_low) / 2 rnr = RestrictedNashResponse(self.game, opponent_strategy, p_current, show_progress=self.show_progress) if self.weight_delay: rnr.train(self.iterations, checkpoint_iterations=self.checkpoint_iterations, checkpoint_callback=checkpoint_callback, weight_delay=self.weight_delay) else: rnr.train(self.iterations, checkpoint_iterations=self.checkpoint_iterations, checkpoint_callback=checkpoint_callback) if best_exploitability_delta < max_exploitability_delta: print('Result exploitability: %s, p=%s' % (best_exploitability, p_current)) return result_strategy, best_exploitability, p_current if self.show_progress: print('Exploitability: %s, p=%s, current_delta=%s' % (best_exploitability, p_current, best_exploitability_delta)) if best_exploitability > exploitability: p_high = p_current else: p_low = p_current best_exploitability = float('inf') best_exploitability_delta = float('inf')
def train_and_show_results(self, test_spec): game = acpc.read_game_file(test_spec['game_file_path']) weak_opponent_samples_tree = GameTreeBuilder( game, SamplesTreeNodeProvider()).build_tree() weak_opponent_strategy_tree = GameTreeBuilder( game, StrategyTreeNodeProvider()).build_tree() def on_node(samples_node, strategy_node): if isinstance(samples_node, ActionNode): child_count = len(samples_node.children) samples_count = random.randrange(15) for i, a in enumerate(samples_node.children): if i < (child_count - 1) and samples_count > 0: action_samples_count = random.randrange(samples_count + 1) samples_count -= action_samples_count samples_node.action_decision_counts[ a] = action_samples_count else: samples_node.action_decision_counts[a] = samples_count samples_sum = np.sum(samples_node.action_decision_counts) if samples_sum > 0: strategy_node.strategy = samples_node.action_decision_counts / samples_sum else: for a in strategy_node.children: strategy_node.strategy[a] = 1 / len( strategy_node.children) walk_trees(on_node, weak_opponent_samples_tree, weak_opponent_strategy_tree) self.assertTrue(is_correct_strategy(weak_opponent_strategy_tree)) exploitability = Exploitability(game) num_test_counts = test_spec['test_counts'] data = np.zeros([num_test_counts, 2, len(P_MAX_VALUES)]) for i in range(num_test_counts): print('%s/%s' % (i + 1, num_test_counts)) for j, p_max in enumerate(P_MAX_VALUES): print('Pmax: %s - %s/%s' % (p_max, j + 1, len(P_MAX_VALUES))) dbr = DataBiasedResponse(game, weak_opponent_samples_tree, p_max=p_max) dbr.train(test_spec['training_iterations']) data[i, 0, j] = exploitability.evaluate(dbr.game_tree) data[i, 1, j] = exploitability.evaluate(weak_opponent_strategy_tree, dbr.game_tree) plt.figure(dpi=160) for k in range(i + 1): run_index = math.floor(k / 2) xdata = data[k, 0, :] if k < i or j == (len(P_MAX_VALUES) - 1) else data[k, 0, 0:j + 1] ydata = data[k, 1, :] if k < i or j == (len(P_MAX_VALUES) - 1) else data[k, 1, 0:j + 1] plt.plot(xdata, ydata, label='Run %s' % (run_index + 1), marker='o', linewidth=0.8) if 'title' in test_spec: plt.title(test_spec['title']) plt.xlabel('DBR trained strategy exploitability [mbb/g]') plt.ylabel( 'Random opponent exploitation by DBR strategy [mbb/g]') plt.grid() if num_test_counts > 1: plt.legend() game_name = test_spec['game_file_path'].split('/')[1][:-5] figure_output_path = '%s/%s(it:%s).png' % ( FIGURES_FOLDER, game_name, test_spec['training_iterations']) figures_directory = os.path.dirname(figure_output_path) if not os.path.exists(figures_directory): os.makedirs(figures_directory) plt.savefig(figure_output_path) print('\033[91mThis test needs your assistance! ' + 'Check the generated graph %s!\033[0m' % figure_output_path)
def train_and_show_results(self, test_spec): game = acpc.read_game_file(test_spec['game_file_path']) exploitability = Exploitability(game) iteration_counts = np.zeros(0) exploitability_values = np.zeros([1, 0]) best_exploitability = float("inf") best_exploitability_strategy = GameTreeBuilder( game, StrategyTreeNodeProvider()).build_tree() def checkpoint_callback(game_tree, checkpoint_index, iterations): nonlocal iteration_counts nonlocal exploitability_values nonlocal best_exploitability nonlocal best_exploitability_strategy iteration_counts = np.append(iteration_counts, iterations) if CHECK_STRATEGY_CORRECTNESS: self.assertTrue(is_correct_strategy(game_tree)) exploitability_value = exploitability.evaluate(game_tree) exploitability_values = np.append(exploitability_values, exploitability_value) if COLLECT_MIN_EXPLOITABILITY and exploitability_value < best_exploitability: best_exploitability = exploitability_value copy_strategy(best_exploitability_strategy, game_tree) cfr = Cfr(game) cfr.train(test_spec['training_iterations'], weight_delay=test_spec['weight_delay'], checkpoint_iterations=test_spec['checkpoint_iterations'], checkpoint_callback=checkpoint_callback, minimal_action_probability=0.00006) best_response = BestResponse(game).solve(cfr.game_tree) player_utilities, _ = PlayerUtility(game).evaluate( cfr.game_tree, best_response) print(player_utilities.tolist()) print('Exploitability: %s' % exploitability.evaluate(cfr.game_tree)) if COLLECT_MIN_EXPLOITABILITY: min_exploitability = exploitability.evaluate( best_exploitability_strategy) min_exploitability_best_response = BestResponse(game).solve( best_exploitability_strategy) min_exploitability_player_utilities, _ = PlayerUtility( game).evaluate(best_exploitability_strategy, min_exploitability_best_response) self.assertEqual(min_exploitability, exploitability_values.min()) print('Minimum exploitability: %s' % min_exploitability) print('Minimum exploitability player utilities: %s' % min_exploitability_player_utilities.tolist()) else: print('Minimum exploitability: %s' % exploitability_values.min()) plt.figure(dpi=160) plt.plot(iteration_counts, exploitability_values, linewidth=0.8) plt.title(test_spec['title']) plt.xlabel('Training iterations') plt.ylabel('Strategy exploitability [mbb/g]') plt.grid() game_name = test_spec['game_file_path'].split('/')[1][:-5] figure_output_path = '%s/%s(it:%s-st:%s).png' % ( FIGURES_FOLDER, game_name, test_spec['training_iterations'], test_spec['checkpoint_iterations']) figures_directory = os.path.dirname(figure_output_path) if not os.path.exists(figures_directory): os.makedirs(figures_directory) plt.savefig(figure_output_path) write_strategy_to_file( cfr.game_tree, '%s/%s(it:%s).strategy' % (FIGURES_FOLDER, game_name, test_spec['training_iterations']), [ '# Game utility against best response: %s' % player_utilities.tolist() ])
def optimize_portfolio(game_file_path, opponent_strategies, response_strategies, portfolio_size=-1, portfolio_cut_improvement_threshold=0.05, log=False, output_directory=None): num_opponents = len(opponent_strategies) if portfolio_size == num_opponents or portfolio_cut_improvement_threshold == 0: return response_strategies, range(num_opponents) game = acpc.read_game_file(game_file_path) exp = Exploitability(game) if log: print() utilities = np.zeros([num_opponents, num_opponents]) for i in range(num_opponents): for j in range(num_opponents): utilities[i, j] = exp.evaluate(opponent_strategies[j], response_strategies[i]) portfolio_utilities = np.zeros(num_opponents) response_added = np.ones(num_opponents, dtype=np.intp) * -1 response_total_utility = np.mean(utilities, axis=1) best_response_index = np.argmax(response_total_utility) portfolio_utilities[0] = response_total_utility[best_response_index] response_added[0] = best_response_index max_utilities = np.zeros(num_opponents) np.copyto(max_utilities, utilities[best_response_index]) response_available = [True] * num_opponents response_available[best_response_index] = False for i in range(1, num_opponents): best_portfolio_utility = None best_max_utilities = None best_response_to_add = None for j in range(num_opponents): if response_available[j]: new_max_utilities = np.maximum(max_utilities, utilities[j]) new_portfolio_utility = np.mean(new_max_utilities) if not best_portfolio_utility or new_portfolio_utility > best_portfolio_utility: best_portfolio_utility = new_portfolio_utility best_max_utilities = new_max_utilities best_response_to_add = j response_available[best_response_to_add] = False max_utilities = best_max_utilities portfolio_utilities[i] = best_portfolio_utility response_added[i] = best_response_to_add final_portfolio_size = None if portfolio_size > 0: final_portfolio_size = portfolio_size else: min_portfolio_utility = portfolio_utilities[0] max_portfolio_utility = portfolio_utilities[-1] total_utility_improvement = max_portfolio_utility - min_portfolio_utility minimal_improvement = total_utility_improvement * portfolio_cut_improvement_threshold final_portfolio_size = 1 for i in range(1, num_opponents): if (portfolio_utilities[i] - portfolio_utilities[i - 1]) >= minimal_improvement: final_portfolio_size += 1 else: break if log: print('Utilities table:') for i in range(num_opponents): print('\t'.join([str(u) for u in utilities[i]])) print('Response added: %s' % response_added) print('Final portfolio size: %s' % final_portfolio_size) plt.figure(dpi=160) plt.plot( np.arange(num_opponents, dtype=np.intp) + 1, portfolio_utilities) plt.plot(final_portfolio_size, portfolio_utilities[final_portfolio_size - 1], marker='o', color='r') plt.title('Portfolio utility') plt.xlabel('Portfolio size') plt.ylabel('Portfolio value [mbb/g]') plt.grid() if output_directory: plt.savefig('%s/portoflio_size_utility.png' % output_directory) else: plt.show() portfolio_response_indices = response_added[:final_portfolio_size] return np.take(response_strategies, portfolio_response_indices), portfolio_response_indices
def create_agents_and_plot_exploitabilities(self, test_spec): base_strategy, _ = read_strategy_from_file( test_spec['game_file_path'], test_spec['base_strategy_path']) game = acpc.read_game_file(test_spec['game_file_path']) exploitability = Exploitability(game) plot_equilibrium = test_spec['plot_equilibrium'] if 'plot_equilibrium' in test_spec else True if plot_equilibrium: equilibrium_exploitability = exploitability.evaluate(base_strategy) tilt_probabilities = test_spec['tilt_probabilities'] exploitability_values = np.zeros([len(TILT_TYPES), len(tilt_probabilities)]) plot_exploitabilities = test_spec['plot_exploitabilities'] if 'plot_exploitabilities' in test_spec else True if plot_exploitabilities: for i, tilt_type in enumerate(TILT_TYPES): for j, tilt_probability in enumerate(tilt_probabilities): tilted_agent = create_agent_strategy_from_trained_strategy( test_spec['game_file_path'], base_strategy, tilt_type[1], tilt_type[2], tilt_probability) exploitability_values[i, j] = exploitability.evaluate(tilted_agent) plt.figure(dpi=160) for j in range(i + 1): plt.plot( tilt_probabilities, exploitability_values[j], label=TILT_TYPES[j][0], linewidth=0.8) if plot_equilibrium: plt.plot( tilt_probabilities, [equilibrium_exploitability] * len(tilt_probabilities), 'r--', label='Equilibrium', linewidth=1.5) # plt.title(test_spec['title']) plt.xlabel('Tilt amount') plt.ylabel('Agent exploitability [mbb/g]') plt.grid() plt.legend() figure_output_path = '%s/%s.png' % (FIGURES_FOLDER, test_spec['figure_filename']) figures_directory = os.path.dirname(figure_output_path) if not os.path.exists(figures_directory): os.makedirs(figures_directory) plt.savefig(figure_output_path) plot_agent_comparison = test_spec['plot_agent_comparison'] if 'plot_agent_comparison' in test_spec else False if plot_agent_comparison: agents_strategies = [] agent_names = [] for i, tilt_type in enumerate(TILT_TYPES): for j, tilt_probability in enumerate(tilt_probabilities): agent_names += ['%s %s %s' % (str(tilt_type[1]).split('.')[1], str(tilt_type[2]).split('.')[1], tilt_probability)] agents_strategies += [create_agent_strategy_from_trained_strategy( test_spec['game_file_path'], base_strategy, tilt_type[1], tilt_type[2], tilt_probability)] num_agents = len(agent_names) scores_table = np.zeros([num_agents, num_agents]) num_comparisons = 0 for i in range(num_agents): for j in range(i, num_agents): num_comparisons += 1 with tqdm(total=num_comparisons) as pbar: for i in range(num_agents): for j in range(i, num_agents): scores_table[i, j] = exploitability.evaluate(agents_strategies[j], agents_strategies[i]) scores_table[j, i] = -scores_table[i, j] pbar.update(1) max_score = scores_table.max() min_score = scores_table.min() # plt.figure(dpi=160) fig, ax = plt.subplots() cax = plt.imshow(scores_table, cmap=plt.cm.RdYlGn) plt.xticks(np.arange(num_agents), agent_names) plt.setp(ax.xaxis.get_majorticklabels(), rotation=45, ha="right", rotation_mode="anchor") plt.yticks(np.arange(num_agents), agent_names) # plt.yticks(rotation=35) # plt.tick_params( # axis='x', # which='both', # bottom=False, # top=False, # labelbottom=False) cbar = fig.colorbar(cax, ticks=[min_score, 0, max_score]) cbar.ax.set_yticklabels([round(min_score), '0', round(max_score)]) plt.tight_layout() plt.gcf().subplots_adjust(left=0.1) figure_output_path = '%s/%s-comparison.png' % (FIGURES_FOLDER, test_spec['figure_filename']) figures_directory = os.path.dirname(figure_output_path) if not os.path.exists(figures_directory): os.makedirs(figures_directory) plt.savefig(figure_output_path, dpi=160)
def train_and_show_results(self, test_spec): game_file_path = test_spec['game_file_path'] portfolio_name = test_spec['portfolio_name'] agent_specs = test_spec['opponent_tilt_types'] if not _check_agent_names_unique(agent_specs): raise AttributeError( 'Agents must be unique so that they have unique names') strategies_directory_base = '%s/%s' % (TEST_OUTPUT_DIRECTORY, portfolio_name) strategies_directory = strategies_directory_base if 'overwrite_portfolio_path' not in test_spec or not test_spec[ 'overwrite_portfolio_path']: counter = 1 while os.path.exists(strategies_directory): strategies_directory = '%s(%s)' % (strategies_directory_base, counter) counter += 1 if not os.path.exists(strategies_directory): os.makedirs(strategies_directory) game = acpc.read_game_file(game_file_path) exp = Exploitability(game) # Delete results since they will be generated again for file in os.listdir(strategies_directory): absolute_path = '/'.join([strategies_directory, file]) if os.path.isfile(absolute_path): os.remove(absolute_path) base_strategy, _ = read_strategy_from_file( game_file_path, test_spec['base_strategy_path']) num_opponents = len(agent_specs) opponents = [] for agent in agent_specs: opponent_strategy = create_agent_strategy_from_trained_strategy( game_file_path, base_strategy, agent[0], agent[1], agent[2]) opponents += [opponent_strategy] parallel = test_spec['parallel'] if 'parallel' in test_spec else False response_paths = [ '%s/responses/%s-response.strategy' % (strategies_directory, _get_agent_name(agent)) for agent in agent_specs ] opponent_responses = [None] * num_opponents responses_to_train_indices = [] responses_to_train_opponents = [] responses_to_train_params = [] for i in range(num_opponents): if os.path.exists(response_paths[i]): response_strategy, _ = read_strategy_from_file( game_file_path, response_paths[i]) opponent_responses[i] = response_strategy else: responses_to_train_indices += [i] responses_to_train_opponents += [opponents[i]] responses_to_train_params += [agent_specs[i][3]] def on_response_trained(response_index, response_strategy): output_file_path = response_paths[ responses_to_train_indices[response_index]] output_file_dir = os.path.dirname(output_file_path) if not os.path.exists(output_file_dir): os.makedirs(output_file_dir) opponent_strategy = opponents[response_index] opponent_exploitability = exp.evaluate(opponent_strategy) response_exploitability = exp.evaluate(response_strategy) response_utility_vs_opponent = exp.evaluate( opponent_strategy, response_strategy) write_strategy_to_file(response_strategy, output_file_path, [ 'Opponent exploitability: %s' % opponent_exploitability, 'Response exploitability: %s' % response_exploitability, 'Response value vs opponent: %s' % response_utility_vs_opponent, ]) print('%s responses need to be trained' % len(responses_to_train_opponents)) responses_to_train_strategies = train_portfolio_responses( game_file_path, responses_to_train_opponents, responses_to_train_params, log=True, parallel=parallel, callback=on_response_trained) for i, j in enumerate(responses_to_train_indices): opponent_responses[j] = responses_to_train_strategies[i] if 'portfolio_cut_improvement_threshold' in test_spec: portfolio_strategies, response_indices = optimize_portfolio( game_file_path, opponents, opponent_responses, portfolio_cut_improvement_threshold=test_spec[ 'portfolio_cut_improvement_threshold'], log=True, output_directory=strategies_directory) else: portfolio_strategies, response_indices = optimize_portfolio( game_file_path, opponents, opponent_responses, log=True, output_directory=strategies_directory) portfolio_size = len(portfolio_strategies) agent_names = [ _get_agent_name(agent) for agent in np.take(agent_specs, response_indices, axis=0) ] print() for a in agent_specs: print(_get_agent_name(a)) response_strategy_file_names = [] for i, strategy in enumerate(portfolio_strategies): agent_name = agent_names[i] opponent_strategy = opponents[response_indices[i]] opponent_exploitability = exp.evaluate(opponent_strategy) response_exploitability = exp.evaluate(strategy) response_utility_vs_opponent = exp.evaluate( opponent_strategy, strategy) # Save portfolio response strategy response_strategy_output_file_path = '%s/%s-response.strategy' % ( strategies_directory, agent_name) response_strategy_file_names += [ response_strategy_output_file_path.split('/')[-1] ] write_strategy_to_file( strategy, response_strategy_output_file_path, [ 'Opponent exploitability: %s' % opponent_exploitability, 'Response exploitability: %s' % response_exploitability, 'Response value vs opponent: %s' % response_utility_vs_opponent, ]) # Save opponent strategy opponent_strategy_file_name = '%s-opponent.strategy' % agent_name opponent_strategy_output_file_path = '%s/%s' % ( strategies_directory, opponent_strategy_file_name) write_strategy_to_file(opponent_strategy, opponent_strategy_output_file_path) # Generate opponent ACPC script opponent_script_path = '%s/%s.sh' % (strategies_directory, agent_name) shutil.copy(BASE_OPPONENT_SCRIPT_PATH, opponent_script_path) _replace_in_file( opponent_script_path, OPPONENT_SCRIPT_REPLACE_STRINGS, [ WARNING_COMMENT, game_file_path, opponent_strategy_output_file_path.split('/')[-1] ]) for utility_estimation_method in UTILITY_ESTIMATION_METHODS: agent_name_method_name = '' if utility_estimation_method == UTILITY_ESTIMATION_METHODS[ 0] else '-%s' % utility_estimation_method agent_script_path = '%s/%s%s.sh' % ( strategies_directory, portfolio_name, agent_name_method_name) shutil.copy(BASE_AGENT_SCRIPT_PATH, agent_script_path) strategies_replacement = '' for i in range(portfolio_size): strategies_replacement += ' "${SCRIPT_DIR}/%s"' % response_strategy_file_names[ i] if i < (portfolio_size - 1): strategies_replacement += ' \\\n' _replace_in_file(agent_script_path, AGENT_SCRIPT_REPLACE_STRINGS, [ WARNING_COMMENT, game_file_path, '"%s"' % utility_estimation_method, strategies_replacement ])