示例#1
0
 def __init__(self, model, params, space):
     self.__model = model
     self.__params = params
     self.__space = space
     self.__evaluator = Evaluator(self.__model)
     self.__train_df = None
     self.__test_df = None
示例#2
0
def build_ideal_window_hopping_set(windowSize,
                                   AbstractBaseSampler,
                                   filename='./data/creditcard.csv',
                                   max_window_ct=3):
    filename = './data/creditcard.csv'
    sample_sizes = [30, 40, 60]
    for sample_size in sample_sizes:
        hopper, column_names = buildFromCSV(filename, windowSize, "Time")
        windows = hopper.hopper()
        sampler = AbstractBaseSampler(sample_size, (2, 29),
                                      eta)  # sample size, column range, eta
        samples = dict()
        num_windows = 0
        for window in windows:
            samples[num_windows] = sampler.sample(window)
            num_windows += 1
            if num_windows > max_window_ct: break

        storage_filename = _persistentFileName(str(sampler), filename,
                                               windowSize, sample_size)
        # store dataset and return evaluation metrics on it
        sampler.persist_sample_set(samples, storage_filename, column_names,
                                   num_windows)
        e = Evaluator(samples, sampler)
        e.save(storage_filename + "evaluator.csv")
    return
示例#3
0
def evaluateWillsSamplerParallel(windowSize,
                                 filename='./data/creditcard.csv',
                                 max_window_ct=3):
    parallel_counts = [1, 2, 4, 8, 16, 32]
    filename = './data/creditcard.csv'
    sample_sizes = [30, 40, 60]
    for sample_size in sample_sizes:
        for parallel_count in parallel_counts:
            hopper, column_names = buildFromCSV(filename, windowSize, "Time")
            windows = hopper.hopper()
            sampler = WillsSampler(sample_size, (2, 29),
                                   eta,
                                   parallel_count=parallel_count)
            samples = dict()
            num_windows = 0
            for window in windows:
                samples[num_windows] = sampler.sample(window).deheapify()
                num_windows += 1
                if num_windows > max_window_ct: break

            storage_filename = sampler.persistent_filename(
                filename, windowSize)
            # store dataset and return evaluation metrics on it
            sampler.persist_sample_set(samples, storage_filename, column_names,
                                       num_windows)
            e = Evaluator(samples, sampler)
            e.save(storage_filename + "evaluator.csv")
    return
示例#4
0
def evaluateWillsSamplerClusters(windowSize,
                                 filename='./data/creditcard.csv',
                                 max_window_ct=3):
    parallel_counts = [1, 4, 16]
    cluster_choices = [1, 6, 11, 21, 31, 51]
    cluster_centers_collection = loadClusters(cluster_choices)
    filename = './data/creditcard.csv'
    sample_sizes = [30, 40, 60, 100]
    for sample_size in sample_sizes:
        for num_centers, cluster_centers in cluster_centers_collection.items():
            for parallel_count in parallel_counts:
                hopper, column_names = buildFromCSV(filename, windowSize,
                                                    "Time")
                windows = hopper.hopper()
                sampler = WillsSampler(sample_size, (2, 29),
                                       eta,
                                       parallel_count=parallel_count,
                                       cluster_centers=cluster_centers)
                samples = dict()
                num_windows = 0
                for window in windows:
                    samples[num_windows] = sampler.sample(window).deheapify()
                    num_windows += 1
                    if num_windows > max_window_ct: break

                storage_filename = sampler.persistent_filename(
                    filename, windowSize)
                # store dataset and return evaluation metrics on it
                sampler.persist_sample_set(samples, storage_filename,
                                           column_names, num_windows)
                e = Evaluator(samples, sampler)
                e.save(storage_filename + "evaluator.csv")
    return
示例#5
0
def main():
    args = parse_arguments()

    print("#" * 80)
    print("Model:                         ", args.model_class)
    print("Parameters:                    ", args.model_parameters)
    print("X:                             ", args.x_filepath)
    print("Y:                             ", args.y_filepath)
    print("Splits:                        ", args.n_splits)
    print("Random State:                  ", args.random_state)
    print("Model Filepath:                ", args.model_filepath)
    print("Raw Evaluation Filepath:       ", args.raw_model_score_filepath)
    print("Aggregate Evaluation Filepath: ",
          args.aggregated_model_score_filepath)

    model = initialize_model(args.model_class, args.model_parameters)

    X = np.load(args.x_filepath)

    Y = np.load(args.y_filepath)

    evaluator = Evaluator(args.n_splits)

    train_model(model, X, Y, evaluator, args.n_splits, args.random_state)

    evaluator.save(args.raw_model_score_filepath,
                   args.aggregated_model_score_filepath)

    joblib.dump(model, args.model_filepath)

    print("#" * 80)
示例#6
0
 def __init__(self, crf, gibbs=False, cd=False, n_samps=5, burn=5, interval=5):
     self.crf = crf
     self.gibbs = gibbs
     self.cd = gibbs and cd
     self.E_f = self.exp_feat_gibbs if gibbs else self.exp_feat
     self.n_samples = n_samps
     self.burn = burn
     self.interval = interval
     self.ev = Evaluator()
示例#7
0
 def __init__(self,
              init_pop,
              growth_time=2 * 60,
              mut_prob=0.5,
              pop_size=30):
     self._init_pop = init_pop
     self._mut_prob = mut_prob
     self._evaluator = Evaluator(growth_time)
     self._nsgaii_sorter = NSGAII(2, None, None)
     self._pop_size = pop_size
示例#8
0
def get_classifier_evaluation(prediction,
                              test,
                              classifier_name,
                              data_name,
                              b=2):
    """
    this function get the evaluation of each classifier: print the amount of errors and the text of them, plot roc_curve
    and return the measures scores.
    """
    evaluation = Evaluator(prediction, test, b)
    return evaluation.get_evaluation(classifier_name, data_name)
示例#9
0
def label_evaluation(test_data, predicted_labels):
    gold_labels = flatten([flatten(i["gold_labels"]) for i in test_data])
    gold_labels = [1 if i else 0 for i in gold_labels]
    metric_evaluation = Evaluator()
    metric_evaluation.compute_all(gold_labels, predicted_labels)
    log.write("Confusion Matrix :")
    log.write(metric_evaluation.confusion_matrix)
    log.write("Accuracy     = %f" % metric_evaluation.accuracy)
    log.write("Precision    = %f" % metric_evaluation.precision)
    log.write("Recall       = %f" % metric_evaluation.recall)
    log.write("F1 Score     = %f" % metric_evaluation.f1_score)
示例#10
0
class Cross_Validation:
    def __init__(self):
        self.knn_algo = KnnAlgorithm()
        self.evaluator = Evaluator()

    def cross_validation(self, dataset, k, params):
        fold_size = m.floor(len(dataset) / k)
        best_param = 1
        max_a = 0
        for i in range(k):
            folds = np.split(
                dataset,
                [i * fold_size, i * fold_size + fold_size,
                 len(dataset)])
            test = folds[1]
            training = np.concatenate((folds[0], folds[2]))
            curr_p, acc = self.parameter_tuning(training, params, k - 1)
            if max_a < acc:
                max_a = acc
                best_param = curr_p
        print(max_a)
        return best_param

    def parameter_tuning(self, training, params, k):
        fold_size = m.floor(len(training) / k)
        max_a = 0
        best_param = 1
        for i in range(k):
            folds = np.split(
                training,
                [i * fold_size, i * fold_size + fold_size,
                 len(training)])
            validation_data = folds[1]
            training_data = np.concatenate((folds[0], folds[2]))
            columns = int(validation_data.shape[1])

            sections = [int(columns - 1), columns]
            val_data = np.hsplit(validation_data, sections)
            ground_truth = val_data[1]
            val_data = val_data[0]
            for param in params:
                pred = self.knn_algo.predict_multiple(param, training_data,
                                                      val_data)
                cm = self.evaluator.get_cm(pred, ground_truth)
                accuracy = self.evaluator.accuracy(cm)
                if accuracy > max_a:
                    max_a = accuracy
                    best_param = param

        return best_param, max_a
示例#11
0
文件: models.py 项目: Dirzys/stn
 def evaluate(self, name, pprint):
     """
     Evaluate model using predicted tracks and actually listened tracks.
     :param name: string, name of the experiment (if None, class name will be printed instead)
     :param pprint: bool, if True -> scores will be pretty printed
     :return: score of the model as a tuple (precision, recall, f-score)
     """
     if name is None:
         name = self.type
     evaluation = Evaluator()
     score = evaluation.score(self.predicted_tracks,
                              self.to_user_track_map(self.get_unique_user_tracks(self.testing_data).values))
     if pprint:
         evaluation.pprint_scores(score, name)
     return score
示例#12
0
def run_experiment(args: dict[str, str]):
    if args["models"] == "all":
        args["models"] = ALL_MODEL_NAMES
    if args["datasets"] == "all":
        args["datasets"] = ALL_DATASET_NAMES

    models = setup_models(args["models"].split(), args["location"], daner_path=args["daner"])
    log(f"Succesfully set up {len(models)} models")

    datasets = setup_datasets(args["datasets"].split(), wikiann_path=args["wikiann"], plank_path=args["plank"])
    log(f"Sucessfully acquired {len(datasets)} NER datasets")

    for model in models:
        for dataset in datasets:
            e = Evaluator(model, dataset)
            res = e.run()
            res.save(os.path.join(args["location"], "-".join((model.name, dataset.name))))
示例#13
0
    def __init__(self,
                 model: Model,
                 optimizer_name: str = "Adagrad",
                 batch_size: int = 256,
                 learning_rate: float = 1e-2,
                 decay1: float = 0.9,
                 decay2: float = 0.99,
                 regularizer_name: str = "N3",
                 regularizer_weight: float = 5e-2,
                 verbose: bool = True):
        self.model = model
        self.batch_size = batch_size
        self.verbose = verbose

        # build all the supported optimizers using the passed params (learning rate and decays if Adam)
        supported_optimizers = {
            'Adagrad':
            optim.Adagrad(params=self.model.parameters(), lr=learning_rate),
            'Adam':
            optim.Adam(params=self.model.parameters(),
                       lr=learning_rate,
                       betas=(decay1, decay2)),
            'SGD':
            optim.SGD(params=self.model.parameters(), lr=learning_rate)
        }

        # build all the supported regularizers using the passed regularizer_weight
        supported_regularizers = {
            'N3': N3(weight=regularizer_weight),
            'N2': N2(weight=regularizer_weight)
        }

        # choose the Torch Optimizer object to use, based on the passed name
        self.optimizer = supported_optimizers[optimizer_name]

        # choose the regularizer
        self.regularizer = supported_regularizers[regularizer_name]

        # create the evaluator to use between epochs
        self.evaluator = Evaluator(self.model)
示例#14
0
    def get_evaluation_metrics(self, df_original, df_imputed, target,
                               mask_missing, m_prop, verbose):
        """
        Generate evaluation metrics for datasets

        :param m_prop:
        :param verbose:
        :param target:
        :param df_original:
        :param df_imputed:
        :param mask_missing:
        :return:
        """
        results = dict()
        results['prop'] = m_prop
        results['strategy'] = self.strategy_abbr
        # todo: refactor it with score factory
        if self.strategy_abbr not in ['constant', 'emb']:
            results['rmse'] = Evaluator().get_compare_metrics(
                df_original, df_imputed, mask_missing)
        if self.strategy_abbr not in ['emb']:
            results['uce'] = Evaluator().uce(df_original, df_imputed)
            results['silhouette'] = Evaluator().silhouette(df_imputed)

        # todo: add pipeline for regression with auto detect the target type
        sce_or = Evaluator().sce(df_original, target)
        sce_im = Evaluator().sce(df_imputed, target)
        results['sce'] = sce_im - sce_or
        results['f1'] = Evaluator().f1_score(df_imputed, target)
        # if verbose:
        #     self.logger.info(f'UCE - clustering error between original and imputed datasets = ', np.round(results['uce'], 5))
        #     self.logger.info(f'RMSE score between original values and imputed = ', np.round(results['rmse'], 5))
        #     self.logger.info(f'SCE - classification error between original and imputed datasets', np.round(results['sce'], 5))
        return results
    def valid(self):
        test_iter = Clip_Iterator(c.VALID_DIR_CLIPS)
        evaluator = Evaluator(self.global_step)
        i = 0
        for data in test_iter.sample_valid(self._batch):
            in_data = data[:, :self._in_seq, ...]
            if c.IN_CHANEL == 3:
                gt_data = data[:,
                               self._in_seq:self._in_seq + self._out_seq, :, :,
                               1:-1]
            elif c.IN_CHANEL == 1:
                gt_data = data[:, self._in_seq:self._in_seq + self._out_seq,
                               ...]
            else:
                raise NotImplementedError
            if c.NORMALIZE:
                in_data = normalize_frames(in_data)
                gt_data = normalize_frames(gt_data)

            mse, mae, gdl, pred = self.g_model.valid_step(in_data, gt_data)
            evaluator.evaluate(gt_data, pred)
            self.logger.info(f"Iter {self.global_step} {i}: \n\t "
                             f"mse:{mse:.4f} \n\t "
                             f"mae:{mae:.4f} \n\t "
                             f"gdl:{gdl:.4f}")
            i += 1
        evaluator.done()
示例#16
0
    def run_benchmark(self, iter, mode="Valid"):
        if mode == "Valid":
            time_interval = c.RAINY_VALID
            stride = 20
        else:
            time_interval = c.RAINY_TEST
            stride = 1
        test_iter = Iterator(time_interval=time_interval,
                             sample_mode="sequent",
                             seq_len=c.IN_SEQ + c.OUT_SEQ,
                             stride=1)
        evaluator = Evaluator(iter)
        i = 1
        while not test_iter.use_up:
            data, date_clip, *_ = test_iter.sample(batch_size=c.BATCH_SIZE)
            in_data = np.zeros(shape=(c.BATCH_SIZE, c.IN_SEQ, c.H, c.W, c.IN_CHANEL))
            gt_data = np.zeros(shape=(c.BATCH_SIZE, c.OUT_SEQ, c.H, c.W, 1))
            if type(data) == type([]):
                break
            in_data[...] = data[:, :c.IN_SEQ, ...]

            if c.IN_CHANEL == 3:
                gt_data[...] = data[:, c.IN_SEQ:c.IN_SEQ + c.OUT_SEQ, :, :, 1:-1]
            elif c.IN_CHANEL == 1:
                gt_data[...] = data[:, c.IN_SEQ:c.IN_SEQ + c.OUT_SEQ, ...]
            else:
                raise NotImplementedError

            # in_date = date_clip[0][:c.IN_SEQ]

            if c.NORMALIZE:
                in_data = normalize_frames(in_data)
                gt_data = normalize_frames(gt_data)

            mse, mae, gdl, pred = self.model.valid_step(in_data, gt_data)
            evaluator.evaluate(gt_data, pred)
            logging.info(f"Iter {iter} {i}: \n\t mse:{mse} \n\t mae:{mae} \n\t gdl:{gdl}")
            i += 1
            if i % stride == 0:
                if c.IN_CHANEL == 3:
                    in_data = in_data[:, :, :, :, 1:-1]

                for b in range(c.BATCH_SIZE):
                    predict_date = date_clip[b][c.IN_SEQ]
                    logging.info(f"Save {predict_date} results")
                    if mode == "Valid":
                        save_path = os.path.join(c.SAVE_VALID, str(iter), predict_date.strftime("%Y%m%d%H%M"))
                    else:
                        save_path = os.path.join(c.SAVE_TEST, str(iter), predict_date.strftime("%Y%m%d%H%M"))

                    path = os.path.join(save_path, "in")
                    save_png(in_data[b], path)

                    path = os.path.join(save_path, "pred")
                    save_png(pred[b], path)

                    path = os.path.join(save_path, "out")
                    save_png(gt_data[b], path)
        evaluator.done()
示例#17
0
    def generate_callbacks(self):
        callbacks = []

        tbpath = os.path.join(self.out_path, "tensorboard")
        symtbpath = os.path.join(args.output, "tensorboard", args.tag)
        if not os.path.exists(tbpath):
            os.makedirs(tbpath)
        if not os.path.exists(symtbpath):
            os.symlink(tbpath, symtbpath)
            print(f"Symlinked {tbpath} -> {symtbpath}")
        log_files_list = os.listdir(tbpath)
        if log_files_list != []:
            for fn in log_files_list:
                print(f"Deleting {os.path.join(tbpath, fn)}")
                shutil.rmtree(os.path.join(tbpath, fn))
        checkpath = os.path.join(self.out_path, 'checkpoint/')
        if not os.path.exists(checkpath):
            os.makedirs(checkpath)

        tb_callback = tf.keras.callbacks.TensorBoard(log_dir=tbpath,
                                                     update_freq='epoch',
                                                     write_graph=True,
                                                     write_images=True)
        callbacks.append(tb_callback)

        check_name = os.path.join(checkpath, f'{args.model}_{args.tag}.hdf5')
        if self.data == 'opportunity':
            monitorname = f"out_{self.label_names[0]}_fmeasure"
            if len(self.label_names) == 1:
                monitorname = 'fmeasure'
        elif self.data == 'deap':
            monitorname = f"val_out_{self.label_names[0]}_accuracy"
        check_callback = tf.keras.callbacks.\
            ModelCheckpoint(check_name,
                            monitor=monitorname,
                            save_best_only=True,
                            mode='max',
                            save_freq='epoch',
                            save_weights_only=False)
        callbacks.append(check_callback)

        if self.data == 'opportunity':
            evaluator = Evaluator(self.label_names)
            eval_dir = os.path.join(outpath, 'evaluation')
            if not os.path.isdir(eval_dir):
                os.makedirs(eval_dir)
            eval_callback = EvaluationCallback(self.val_data, self.label_names,
                                               self.num_classes, eval_dir)
            callbacks.append(eval_callback)
        return callbacks
示例#18
0
    def __init__(self,
                 model: TuckER,
                 batch_size: int = 128,
                 learning_rate: float = 0.03,
                 decay: float = 1.0,
                 label_smoothing: float = 0.1,
                 verbose: bool = True):
        self.model = model
        self.dataset = self.model.dataset
        self.batch_size = batch_size
        self.label_smoothing = label_smoothing
        self.verbose = verbose
        self.learning_rate = learning_rate
        self.decay_rate = decay
        self.verbose = verbose

        self.loss = torch.nn.BCELoss()
        self.optimizer = optim.Adam(params=self.model.parameters(),
                                    lr=learning_rate)
        self.scheduler = optim.lr_scheduler.ExponentialLR(
            self.optimizer, decay)

        # create the evaluator to use between epochs
        self.evaluator = Evaluator(self.model)
示例#19
0
文件: umwe.py 项目: nishankjain/umwe
def main():
    USE_GPU = True
    if USE_GPU and torch.cuda.is_available():
        torch.cuda.empty_cache()
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')
        
    print('using device:', device)
    dtype = torch.float32
    
# =============================================================================
#     filename = 'curr_model'
#     f = open(filename, 'rb')
#     model = pickle.load(f)
#     f.close()
#     
# =============================================================================
    model = UMWE(dtype, device, 32, 2)
    model.build_model()
    # model.discrim_fit()
    # filename = 'curr_model'
    # f = open(filename, 'wb')
    # pickle.dump(model, f)
    # f.close()
# =============================================================================
    model.mpsr_refine()
# =============================================================================
# =============================================================================
    # for lang in model.src_langs.values():
        # model.export_embeddings(lang, model.embs, "txt")
# =============================================================================
    model.export_embeddings('es', model.embs, "txt")
    eval_ = Evaluator(model)
    print(eval_.clws('es', 'en'))
    eval_.word_translation('es', 'en')
示例#20
0
def val_eval(model, validation_data, loss_fn):
    model.eval()
    eval = Evaluator()
    x_val = validation_data.X.to('cuda')
    y_val = validation_data.Y.to('cuda')
    z_val = validation_data.Z.to('cuda')
    yhat = model(x_val)
    val_loss = loss_fn(yhat, y_val)
    eval.update_counter(yhat, y_val, z_val)
    eval.update_loss(0, 0, 0)
    return val_loss, eval.total_percenage[0]
示例#21
0
 def __init__(self,
              transition_system,
              table_path='data/tables.json',
              database_dir='data/database'):
     super(Evaluator, self).__init__()
     self.transition_system = transition_system
     self.kmaps = build_foreign_key_map_from_json(table_path)
     self.database_dir = database_dir
     self.engine = Engine()
     self.checker = Checker(table_path, database_dir)
     self.acc_dict = {
         "sql": self.sql_acc,  # use golden sql as references
         "ast": self.
         ast_acc,  # compare ast accuracy, ast may be incorrect when constructed from raw sql
         "beam": self.
         beam_acc,  # if the correct answer exist in the beam, assume the result is true
     }
示例#22
0
def main(argv):
    del argv

    labels = read_class_labels()
    evaluator = Evaluator(labels)
    with PredictionWriter(labels, FLAGS.dest) as pwriter:
        pwriter.write_headers()
        for filepath in glob.glob(FLAGS.source + '/**/*.wav', recursive=True):
            filename = os.path.basename(filepath)
            predictions = process_file(filepath, FLAGS.ckpt, FLAGS.labels)
            true_label = read_true_label(filepath)
            evaluator.record(predictions, true_label)
            pwriter.write_row(filename, predictions)
    evaluator.print_eval()
示例#23
0
    def evaluate(self, X_test, Y_test, Y_test_classes):
        if not self.model:
            raise Exception("Load or fit new model first")

        score, acc = self.model.evaluate(X_test, Y_test, batch_size=3)
        print("Test accuracy:", acc)

        evaluator = Evaluator()
        predictions_encoded = self.model.predict(X_test)
        predictions = self.lb.inverse_transform(
            [np.argmax(pred) for pred in predictions_encoded])
        evaluator.accuracy(Y_test_classes, predictions)
        # evaluator.classification_report(Y_test_classes, predictions)
        evaluator.confusion_matrix(Y_test_classes, predictions)
示例#24
0
文件: fetc.py 项目: pymir3/pymir3
def run_fetc():

    if "-exp" in sys.argv:
        exp_pos = sys.argv.index("-exp")
        param_file = sys.argv[exp_pos+1]
    else:
        param_file = "experiment.yaml"

    exp = read_parameters(param_file=param_file)

    ovw = parse_commandline(sys.argv)
    overwrite_params(exp, ovw)

    update_parameters(exp)

    #print exp

    if exp['steps']['extract_features']:
        fe = FeatureExtractor.create(params=exp)
        fe.run()

    if exp['steps']['aggregate_features']:
        fa = FeatureAggregator.create(params=exp)
        fa.run()

    if exp['steps']['train']:
        t = ModelTrainer.create(params=exp)
        t.run()

    if exp['steps']['test']:
        t = ModelTester.create(params=exp)
        t.run()


    if exp['steps']['evaluate']:
        t = Evaluator.create(params=exp)
        t.run()
def run_predictions(input_path, output_path, thresholds_file, num_skip,
                    check_existing):
    """Creates thread pool which will concurrently run the prediction for every
    protein map in the 'input_path'

    Parameters
    ----------
    input_path: str
        Path of the input directory where the different protein directories are
        located

    output_path: str
        Path of the folder where all generated files will be stored

    thresholds_file: str
        Path of the JSON file which contains the threshold values for the input
        files

    num_skip: int
        The number of prediction steps that should be skipped

    check_existing: bool
        If set prediction steps are only executed if their results are not
        existing in the output path yet
    """
    # Create list of parameters for every prediction
    params_list = [
        (emdb_id, input_path, output_path, thresholds_file, num_skip,
         check_existing) for emdb_id in filter(
             lambda d: os.path.isdir(input_path + d), os.listdir(input_path))
    ]

    start_time = time()
    pool = Pool(min(cpu_count(), len(params_list)))
    results = pool.map(run_prediction, params_list)

    # Filter 'None' results
    results = filter(lambda r: r is not None, results)

    evaluator = Evaluator(input_path)
    for emdb_id, predicted_file, gt_file, execution_time in results:
        evaluator.evaluate(emdb_id, predicted_file, gt_file, execution_time)

    evaluator.create_report(output_path, time() - start_time)
示例#26
0
def run_fetc():

    if "-exp" in sys.argv:
        exp_pos = sys.argv.index("-exp")
        param_file = sys.argv[exp_pos + 1]
    else:
        param_file = "experiment.yaml"

    exp = read_parameters(param_file=param_file)

    ovw = parse_commandline(sys.argv)
    overwrite_params(exp, ovw)

    update_parameters(exp)

    #print exp

    if exp['steps']['extract_features']:
        fe = FeatureExtractor.create(params=exp)
        fe.run()

    if exp['steps']['aggregate_features']:
        fa = FeatureAggregator.create(params=exp)
        fa.run()

    if exp['steps']['train']:
        t = ModelTrainer.create(params=exp)
        t.run()

    if exp['steps']['test']:
        t = ModelTester.create(params=exp)
        t.run()

    if exp['steps']['evaluate']:
        t = Evaluator.create(params=exp)
        t.run()
示例#27
0
    def valid_clips(self, step):
        test_iter = Clip_Iterator(c.VALID_DIR_CLIPS)
        evaluator = Evaluator(step)
        i = 0
        for data in test_iter.sample_valid(c.BATCH_SIZE):
            in_data = data[:, :c.IN_SEQ, ...]
            if c.IN_CHANEL == 3:
                gt_data = data[:, c.IN_SEQ:c.IN_SEQ + c.OUT_SEQ, :, :, 1:-1]
            elif c.IN_CHANEL == 1:
                gt_data = data[:, c.IN_SEQ:c.IN_SEQ + c.OUT_SEQ, ...]
            else:
                raise NotImplementedError
            if c.NORMALIZE:
                in_data = normalize_frames(in_data)
                gt_data = normalize_frames(gt_data)

            mse, mae, gdl, pred = self.model.valid_step(in_data, gt_data)
            evaluator.evaluate(gt_data, pred)
            logging.info(f"Iter {step} {i}: \n\t mse:{mse} \n\t mae:{mae} \n\t gdl:{gdl}")
            i += 1
        evaluator.done()
示例#28
0
def run_evaluation():
    with open("queries.txt", "r") as queries_file:
        queries = list(map(str.strip, queries_file.readlines()))
    print(Evaluator().evaluate_to_latex(queries, "query.csv", "like.csv", relevance_cutoff=2))  
示例#29
0
dataset = IHDP(replications=args.reps)
scores = np.zeros((args.reps, 3))
scores_test = np.zeros((args.reps, 3))

M = None
d = 20  # latent space dimension
lamba = 1e-4  # weight decay
nh, h = 5, 200  # number and size of hidden layers

for i, (train, valid, test, contfeats,
        binfeats) in enumerate(dataset.get_train_valid_test()):
    print('\nReplication {}/{}'.format(i + 1, args.reps))
    (xtr, ttr, ytr), (y_cftr, mu0tr, mu1tr) = train
    (xva, tva, yva), (y_cfva, mu0va, mu1va) = valid
    (xte, tte, yte), (y_cfte, mu0te, mu1te) = test
    evaluator_test = Evaluator(yte, tte, y_cf=y_cfte, mu0=mu0te, mu1=mu1te)

    # Reorder features with binary first and continuous after
    perm = binfeats + contfeats
    xtr, xva, xte = xtr[:, perm], xva[:, perm], xte[:, perm]

    xalltr, talltr, yalltr = np.concatenate(
        [xtr, xva], axis=0), np.concatenate([ttr, tva],
                                            axis=0), np.concatenate([ytr, yva],
                                                                    axis=0)

    evaluator_train = Evaluator(yalltr,
                                talltr,
                                y_cf=np.concatenate([y_cftr, y_cfva], axis=0),
                                mu0=np.concatenate([mu0tr, mu0va], axis=0),
                                mu1=np.concatenate([mu1tr, mu1va], axis=0))
示例#30
0
        fold_importance_df["fold"] = n_fold + 1
        feature_importance_df = pd.concat(
            [feature_importance_df, fold_importance_df], axis=0)

        predictions += clf.predict(
            X_test, num_iteration=clf.best_iteration) / folds.n_splits

    print("CV score (Validation): {:<8.5f}".format(roc_auc_score(Y_train,
                                                                 oof)))
    print("CV score (Test): {:<8.5f}".format(roc_auc_score(
        Y_test, predictions)))

    y_pred = np.zeros(predictions.shape[0])
    y_pred[predictions >= 0.1] = 1

    eval = Evaluator()
    eval.evaluate(Y_test, y_pred)

    cols = (feature_importance_df[[
        "feature", "importance"
    ]].groupby("feature").mean().sort_values(by="importance",
                                             ascending=False)[:1000].index)
    best_features = feature_importance_df.loc[
        feature_importance_df.feature.isin(cols)]

    plt.figure(figsize=(14, 26))
    sns.barplot(x="importance",
                y="feature",
                data=best_features.sort_values(by="importance",
                                               ascending=False))
    plt.title('LightGBM Features (averaged over folds)')
示例#31
0
class MultiClassNLLptimizer:
    """
        This optimizer relies on Multiclass Negative Log Likelihood loss.
        It is heavily inspired by paper ""
        Instead of considering each training sample as the "unit" for training,
        it groups training samples into couples (h, r) -> [all t for which <h, r, t> in training set].
        Each couple (h, r) with the corresponding tails is treated as if it was one sample.

        When passing them to the loss...

        In our implementation, it is used by the following models:
            - TuckER

    """
    def __init__(self,
                 model: Model,
                 optimizer_name: str = "Adagrad",
                 batch_size: int = 256,
                 learning_rate: float = 1e-2,
                 decay1: float = 0.9,
                 decay2: float = 0.99,
                 regularizer_name: str = "N3",
                 regularizer_weight: float = 5e-2,
                 verbose: bool = True):
        self.model = model
        self.batch_size = batch_size
        self.verbose = verbose

        # build all the supported optimizers using the passed params (learning rate and decays if Adam)
        supported_optimizers = {
            'Adagrad':
            optim.Adagrad(params=self.model.parameters(), lr=learning_rate),
            'Adam':
            optim.Adam(params=self.model.parameters(),
                       lr=learning_rate,
                       betas=(decay1, decay2)),
            'SGD':
            optim.SGD(params=self.model.parameters(), lr=learning_rate)
        }

        # build all the supported regularizers using the passed regularizer_weight
        supported_regularizers = {
            'N3': N3(weight=regularizer_weight),
            'N2': N2(weight=regularizer_weight)
        }

        # choose the Torch Optimizer object to use, based on the passed name
        self.optimizer = supported_optimizers[optimizer_name]

        # choose the regularizer
        self.regularizer = supported_regularizers[regularizer_name]

        # create the evaluator to use between epochs
        self.evaluator = Evaluator(self.model)

    def train(self,
              train_samples: np.array,
              max_epochs: int,
              save_path: str = None,
              evaluate_every: int = -1,
              valid_samples: np.array = None):

        # extract the direct and inverse train facts
        training_samples = np.vstack(
            (train_samples, self.model.dataset.invert_samples(train_samples)))

        # batch size must be the minimum between the passed value and the number of Kelpie training facts
        batch_size = min(self.batch_size, len(training_samples))

        cur_loss = 0
        for e in range(max_epochs):
            cur_loss = self.epoch(batch_size, training_samples)

            if evaluate_every > 0 and valid_samples is not None and \
                    (e + 1) % evaluate_every == 0:
                mrr, h1 = self.evaluator.eval(samples=valid_samples,
                                              write_output=False)

                print("\tValidation Hits@1: %f" % h1)
                print("\tValidation Mean Reciprocal Rank': %f" % mrr)

                if save_path is not None:
                    print("\t saving model...")
                    torch.save(self.model.state_dict(), save_path)
                print("\t done.")

        if save_path is not None:
            print("\t saving model...")
            torch.save(self.model.state_dict(), save_path)
            print("\t done.")

    def epoch(self, batch_size: int, training_samples: np.array):
        training_samples = torch.from_numpy(training_samples).cuda()

        # at the beginning of the epoch, shuffle all samples randomly
        actual_samples = training_samples[
            torch.randperm(training_samples.shape[0]), :]
        loss = nn.CrossEntropyLoss(reduction='mean')

        with tqdm.tqdm(total=training_samples.shape[0],
                       unit='ex',
                       disable=not self.verbose) as bar:
            bar.set_description(f'train loss')

            batch_start = 0
            while batch_start < training_samples.shape[0]:
                batch_end = min(batch_start + batch_size,
                                training_samples.shape[0])
                batch = actual_samples[batch_start:batch_end].cuda()
                l = self.step_on_batch(loss, batch)

                batch_start += self.batch_size
                bar.update(batch.shape[0])
                bar.set_postfix(loss=f'{l.item():.0f}')

    def step_on_batch(self, loss, batch):
        predictions, factors = self.model.forward(batch)
        truth = batch[:, 2]

        # compute loss
        l_fit = loss(predictions, truth)
        l_reg = self.regularizer.forward(factors)
        l = l_fit + l_reg

        # compute loss gradients, and run optimization step
        self.optimizer.zero_grad()
        l.backward()
        self.optimizer.step()

        # return loss
        return l
示例#32
0
    KFold,
    cross_val_predict,
    cross_val_score,
    LeaveOneOut,
    GridSearchCV,
)
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC

import utils
import random
from evaluation import Evaluator
from feature_extraction import tfidf_features_1, bag_of_words_features_1

evaluator = Evaluator()


class PopularityModel:
    def name(self):
        return "Popularity model"

    def get_most_representative_class(self, Y_train):
        """Return most representative class"""
        item_counts = Y_train[utils.col_to_predict].value_counts()
        most_reprenetative = item_counts.idxmax()
        return most_reprenetative

    def predict(self, train, test):
        most_representative_class = self.get_most_representative_class(train)
        return [most_representative_class for _ in range(len(test))]