# Create a random enviroment sampled from a GP with an RBF kernel and specified hyperparameters, mean function 0 # The enviorment will be constrained by a set of uniformly distributed sample points of size NUM_PTS x NUM_PTS ranges = (0., 10., 0., 10.) world = envlib.Environment(ranges = ranges, NUM_PTS = 20, variance = 100.0, lengthscale = 1.0, visualize = True, seed = seed, MIN_COLOR=MIN_COLOR, MAX_COLOR=MAX_COLOR) # Create the evaluation class used to quantify the simulation metrics evaluation = evalib.Evaluation(world = world, reward_function = reward_function) # Populate a world with obstacles # ow = obslib.FreeWorld() # ow = obslib.BlockWorld(ranges, 1, dim_blocks= (2,2), centers=[(7,7)]) ow = obslib.ChannelWorld(ranges, (2.5,7), 3, 0.2) # Create the point robot robot = roblib.Robot(sample_world = world.sample_value, #function handle for collecting observations start_loc = (5.0, 5.0, 0.0), #where robot is instantiated extent = ranges, #extent of the explorable environment kernel_file = None, kernel_dataset = None, prior_dataset = None, #(data, observations), init_lengthscale = 1.0, init_variance = 100.0,
NOISE = 1.0 world = envlib.Environment(ranges = ranges, NUM_PTS = 100, variance = VAR, lengthscale = LEN, noise = NOISE, visualize = True, seed = SEED, MAX_COLOR = MAX_COLOR, MIN_COLOR = MIN_COLOR, model = gp_world, obstacle_world = ow) # Create the evaluation class used to quantify the simulation metrics evaluation = evalib.Evaluation(world = world, reward_function = REWARD_FUNCTION) # Generate a prior dataset ''' x1observe = np.linspace(ranges[0], ranges[1], 5) x2observe = np.linspace(ranges[2], ranges[3], 5) x1observe, x2observe = np.meshgrid(x1observe, x2observe, sparse = False, indexing = 'xy') data = np.vstack([x1observe.ravel(), x2observe.ravel()]).T observations = world.sample_value(data) ''' print "Creating robot!" # Create the point robot robot = roblib.Robot(sample_world = world.sample_value, #function handle for collecting observations start_loc = (5.0, 5.0, 0.0), #where robot is instantiated extent = ranges, #extent of the explorable environment