def train_epoch_end(config, compression_algo, net, epoch, iteration, epoch_size, lr_scheduler, optimizer, test_data_loader): test_freq_in_epochs = max(config.test_interval // epoch_size, 1) compression_algo.scheduler.epoch_step(epoch) if not isinstance(lr_scheduler, ReduceLROnPlateau): lr_scheduler.step(epoch) if epoch % test_freq_in_epochs == 0 and iteration != 0: if is_on_first_rank(config): print_statistics(compression_algo.statistics()) with torch.no_grad(): net.eval() mAP = test_net(net, config.device, test_data_loader, distributed=config.multiprocessing_distributed) if isinstance(lr_scheduler, ReduceLROnPlateau): lr_scheduler.step(mAP) net.train() if epoch > 0 and epoch % config.save_freq == 0 and is_on_first_rank(config): print('Saving state, iter:', iteration) checkpoint_file_path = osp.join(config.intermediate_checkpoints_path, "{}_{}.pth".format(config.model, iteration)) torch.save({ 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'iter': iteration, 'scheduler': compression_algo.scheduler.state_dict() }, str(checkpoint_file_path))
def train_epoch_end(config, compression_algo, net, epoch, iteration, epoch_size, lr_scheduler, optimizer, test_data_loader, best_mAp): is_best = False test_freq_in_epochs = max(config.test_interval // epoch_size, 1) compression_algo.scheduler.epoch_step(epoch) if not isinstance(lr_scheduler, ReduceLROnPlateau): lr_scheduler.step(epoch) if epoch % test_freq_in_epochs == 0 and iteration != 0: if is_on_first_rank(config): print_statistics(compression_algo.statistics()) with torch.no_grad(): net.eval() mAP = test_net(net, config.device, test_data_loader, distributed=config.multiprocessing_distributed) if mAP > best_mAp: is_best = True best_mAp = mAP if config.metrics_dump is not None: write_metrics(mAP, config) if isinstance(lr_scheduler, ReduceLROnPlateau): lr_scheduler.step(mAP) net.train() if is_on_first_rank(config): checkpoint_file_path = osp.join(config.checkpoint_save_dir, "{}_last.pth".format(get_name(config))) torch.save( { 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'iter': iteration, 'scheduler': compression_algo.scheduler.state_dict() }, str(checkpoint_file_path)) make_additional_checkpoints(checkpoint_file_path, is_best=is_best, epoch=epoch + 1, config=config) return best_mAp
def main_worker(current_gpu, config): ################################# # Setup experiment environment ################################# config.current_gpu = current_gpu config.distributed = config.execution_mode in (ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED) if config.distributed: configure_distributed(config) if is_on_first_rank(config): configure_logging(config) print_args(config) config.device = get_device(config) config.start_iter = 0 ########################## # Prepare metrics log file ########################## if config.metrics_dump and config.resuming_checkpoint is not None: avg = 0 metrics = {os.path.basename(config.resuming_checkpoint): avg} write_metrics(config, metrics) ################## # Prepare model ################## compression_algo, net = create_model(config) if config.distributed: config.batch_size //= config.ngpus_per_node config.workers //= config.ngpus_per_node compression_algo.distributed() ########################### # Criterion and optimizer ########################### params_to_optimize = get_parameter_groups(net, config) optimizer, lr_scheduler = make_optimizer(params_to_optimize, config) criterion = MultiBoxLoss( config, config['num_classes'], overlap_thresh=0.5, prior_for_matching=True, bkg_label=0, neg_mining=True, neg_pos=3, neg_overlap=0.5, encode_target=False, device=config.device ) ########################### # Load checkpoint ########################### resuming_checkpoint = config.resuming_checkpoint if resuming_checkpoint: print('Resuming training, loading {}...'.format(resuming_checkpoint)) checkpoint = torch.load(resuming_checkpoint, map_location='cpu') # use checkpoint itself in case of only state dict is saved # i.e. checkpoint is created with `torch.save(module.state_dict())` state_dict = checkpoint.get('state_dict', checkpoint) load_state(net, state_dict, is_resume=True) if config.mode.lower() == 'train' and config.to_onnx is None: compression_algo.scheduler.load_state_dict(checkpoint['scheduler']) optimizer.load_state_dict(checkpoint.get('optimizer', optimizer.state_dict())) config.start_iter = checkpoint.get('iter', 0) + 1 if config.to_onnx: compression_algo.export_model(config.to_onnx) print("Saved to {}".format(config.to_onnx)) return ########################### # Prepare data ########################### test_data_loader, train_data_loader = create_dataloaders(config) if config.mode.lower() == 'test': with torch.no_grad(): print_statistics(compression_algo.statistics()) net.eval() mAp = test_net(net, config.device, test_data_loader, distributed=config.distributed) if config.metrics_dump and config.resuming_checkpoint is not None: avg = mAp*100 metrics = {os.path.basename(config.resuming_checkpoint): round(avg, 2)} write_metrics(config, metrics) return if not resuming_checkpoint: compression_algo.initialize(train_data_loader) train(net, compression_algo, train_data_loader, test_data_loader, criterion, optimizer, config, lr_scheduler)
def train(net, compression_algo, train_data_loader, test_data_loader, criterion, optimizer, config, lr_scheduler): net.train() # loss counters loc_loss = 0 # epoch conf_loss = 0 epoch_size = len(train_data_loader) print('Training ', config.model, ' on ', train_data_loader.dataset.name, ' dataset...') batch_iterator = None t_start = time.time() print_statistics(compression_algo.statistics()) for iteration in range(config.start_iter, config['max_iter']): if (not batch_iterator) or (iteration % epoch_size == 0): # create batch iterator batch_iterator = iter(train_data_loader) epoch = iteration // epoch_size if iteration % epoch_size == 0: train_epoch_end(config, compression_algo, net, epoch, iteration, epoch_size, lr_scheduler, optimizer, test_data_loader) compression_algo.scheduler.step(iteration - config.start_iter) optimizer.zero_grad() batch_iterator, batch_loss, batch_loss_c, batch_loss_l, loss_comp = train_step( batch_iterator, compression_algo, config, criterion, net, train_data_loader ) optimizer.step() batch_loss_l = batch_loss_l / config.iter_size batch_loss_c = batch_loss_c / config.iter_size model_loss = (batch_loss_l + batch_loss_c) / config.iter_size batch_loss = batch_loss / config.iter_size loc_loss += batch_loss_l.item() conf_loss += batch_loss_c.item() ########################### # Logging ########################### if is_on_first_rank(config): config.tb.add_scalar("train/loss_l", batch_loss_l.item(), iteration) config.tb.add_scalar("train/loss_c", batch_loss_c.item(), iteration) config.tb.add_scalar("train/loss", batch_loss.item(), iteration) checkpoint_file_path = osp.join(config.checkpoint_save_dir, "{}_last.pth".format(get_name(config))) torch.save({ 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'iter': config['max_iter'], 'scheduler': compression_algo.scheduler.state_dict() }, str(checkpoint_file_path)) make_additional_checkpoints(checkpoint_file_path, is_best=True, epoch=epoch + 1, config=config) if iteration % config.print_freq == 0: t_finish = time.time() t_elapsed = t_finish - t_start t_start = time.time() print('{}: iter {} epoch {} || Loss: {:.4} || Time {:.4}s || lr: {} || CR loss: {}'.format( config.rank, iteration, epoch, model_loss.item(), t_elapsed, optimizer.param_groups[0]['lr'], loss_comp.item() if isinstance(loss_comp, torch.Tensor) else loss_comp ))
def main_worker(current_gpu, config): ################################# # Setup experiment environment ################################# config.current_gpu = current_gpu config.distributed = config.execution_mode in ( ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED) if config.distributed: configure_distributed(config) if is_on_first_rank(config): configure_logging(logger, config) print_args(config) config.device = get_device(config) config.start_iter = 0 ########################## # Prepare metrics log file ########################## if config.metrics_dump is not None: write_metrics(0, config.metrics_dump) ########################### # Criterion ########################### criterion = MultiBoxLoss(config, config['num_classes'], overlap_thresh=0.5, prior_for_matching=True, bkg_label=0, neg_mining=True, neg_pos=3, neg_overlap=0.5, encode_target=False, device=config.device) train_data_loader = test_data_loader = None resuming_checkpoint_path = config.resuming_checkpoint_path ########################### # Prepare data ########################### pretrained = is_pretrained_model_requested(config) if config.to_onnx is not None: assert pretrained or (resuming_checkpoint_path is not None) else: test_data_loader, train_data_loader = create_dataloaders(config) config.nncf_config = register_default_init_args( config.nncf_config, criterion, train_data_loader) ################## # Prepare model ################## resuming_checkpoint_path = config.resuming_checkpoint_path resuming_checkpoint = None resuming_model_state_dict = None if resuming_checkpoint_path: logger.info( 'Resuming from checkpoint {}...'.format(resuming_checkpoint_path)) resuming_checkpoint = torch.load(resuming_checkpoint_path, map_location='cpu') # use checkpoint itself in case only the state dict was saved, # i.e. the checkpoint was created with `torch.save(module.state_dict())` resuming_model_state_dict = resuming_checkpoint.get( 'state_dict', resuming_checkpoint) compression_ctrl, net = create_model(config, resuming_model_state_dict) if config.distributed: config.batch_size //= config.ngpus_per_node config.workers //= config.ngpus_per_node compression_ctrl.distributed() ########################### # Optimizer ########################### params_to_optimize = get_parameter_groups(net, config) optimizer, lr_scheduler = make_optimizer(params_to_optimize, config) ################################# # Load additional checkpoint data ################################# if resuming_checkpoint is not None and config.mode.lower( ) == 'train' and config.to_onnx is None: compression_ctrl.scheduler.load_state_dict( resuming_checkpoint['scheduler']) optimizer.load_state_dict( resuming_checkpoint.get('optimizer', optimizer.state_dict())) config.start_iter = resuming_checkpoint.get('iter', 0) + 1 if config.to_onnx: compression_ctrl.export_model(config.to_onnx) logger.info("Saved to {}".format(config.to_onnx)) return if config.mode.lower() == 'test': with torch.no_grad(): print_statistics(compression_ctrl.statistics()) net.eval() mAp = test_net(net, config.device, test_data_loader, distributed=config.distributed) if config.metrics_dump is not None: write_metrics(mAp, config.metrics_dump) return train(net, compression_ctrl, train_data_loader, test_data_loader, criterion, optimizer, config, lr_scheduler)
def train(net, compression_ctrl, train_data_loader, test_data_loader, criterion, optimizer, config, lr_scheduler): net.train() # loss counters loc_loss = 0 # epoch conf_loss = 0 epoch_size = len(train_data_loader) logger.info('Training {} on {} dataset...'.format( config.model, train_data_loader.dataset.name)) batch_iterator = None t_start = time.time() print_statistics(compression_ctrl.statistics()) best_mAp = 0 best_compression_level = CompressionLevel.NONE test_freq_in_epochs = max(config.test_interval // epoch_size, 1) for iteration in range(config.start_iter, config['max_iter']): if (not batch_iterator) or (iteration % epoch_size == 0): # create batch iterator batch_iterator = iter(train_data_loader) epoch = iteration // epoch_size if (iteration + 1) % epoch_size == 0: compression_ctrl.scheduler.epoch_step(epoch) compression_level = compression_ctrl.compression_level() is_best = False if (epoch + 1) % test_freq_in_epochs == 0: if is_on_first_rank(config): print_statistics(compression_ctrl.statistics()) with torch.no_grad(): net.eval() mAP = test_net( net, config.device, test_data_loader, distributed=config.multiprocessing_distributed) is_best_by_mAP = mAP > best_mAp and compression_level == best_compression_level is_best = is_best_by_mAP or compression_level > best_compression_level if is_best: best_mAp = mAP best_compression_level = max(compression_level, best_compression_level) net.train() # Learning rate scheduling should be applied after optimizer’s update if not isinstance(lr_scheduler, ReduceLROnPlateau): lr_scheduler.step(epoch) else: lr_scheduler.step(mAP) if is_on_first_rank(config): logger.info('Saving state, iter: {}'.format(iteration)) checkpoint_file_path = osp.join( config.checkpoint_save_dir, "{}_last.pth".format(get_name(config))) torch.save( { 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'iter': config['max_iter'], 'scheduler': compression_ctrl.scheduler.state_dict(), 'compression_level': compression_level, }, str(checkpoint_file_path)) make_additional_checkpoints(checkpoint_file_path, is_best=is_best, epoch=epoch + 1, config=config) compression_ctrl.scheduler.step(iteration - config.start_iter) optimizer.zero_grad() batch_iterator, batch_loss, batch_loss_c, batch_loss_l, loss_comp = train_step( batch_iterator, compression_ctrl, config, criterion, net, train_data_loader) optimizer.step() batch_loss_l = batch_loss_l / config.iter_size batch_loss_c = batch_loss_c / config.iter_size model_loss = (batch_loss_l + batch_loss_c) / config.iter_size batch_loss = batch_loss / config.iter_size loc_loss += batch_loss_l.item() conf_loss += batch_loss_c.item() ########################### # Logging ########################### if is_on_first_rank(config): config.tb.add_scalar("train/loss_l", batch_loss_l.item(), iteration) config.tb.add_scalar("train/loss_c", batch_loss_c.item(), iteration) config.tb.add_scalar("train/loss", batch_loss.item(), iteration) if iteration % config.print_freq == 0: t_finish = time.time() t_elapsed = t_finish - t_start t_start = time.time() logger.info( '{}: iter {} epoch {} || Loss: {:.4} || Time {:.4}s || lr: {} || CR loss: {}' .format( config.rank, iteration, epoch, model_loss.item(), t_elapsed, optimizer.param_groups[0]['lr'], loss_comp.item() if isinstance(loss_comp, torch.Tensor) else loss_comp)) if config.metrics_dump is not None: write_metrics(best_mAp, config.metrics_dump)
def main_worker(current_gpu, config): ################################# # Setup experiment environment ################################# configure_device(current_gpu, config) config.mlflow = SafeMLFLow(config) if is_on_first_rank(config): configure_logging(logger, config) print_args(config) config.start_iter = 0 nncf_config = config.nncf_config ########################## # Prepare metrics log file ########################## if config.metrics_dump is not None: write_metrics(0, config.metrics_dump) ########################### # Criterion ########################### criterion = MultiBoxLoss(config, config['num_classes'], overlap_thresh=0.5, prior_for_matching=True, bkg_label=0, neg_mining=True, neg_pos=3, neg_overlap=0.5, encode_target=False, device=config.device) train_data_loader = test_data_loader = None resuming_checkpoint_path = config.resuming_checkpoint_path ########################### # Prepare data ########################### pretrained = is_pretrained_model_requested(config) if config.to_onnx is not None: assert pretrained or (resuming_checkpoint_path is not None) else: test_data_loader, train_data_loader, init_data_loader = create_dataloaders( config) def criterion_fn(model_outputs, target, criterion): loss_l, loss_c = criterion(model_outputs, target) return loss_l + loss_c def autoq_test_fn(model, eval_loader): # RL is maximization, change the loss polarity return -1 * test_net(model, config.device, eval_loader, distributed=config.distributed, loss_inference=True, criterion=criterion) nncf_config = register_default_init_args(nncf_config, init_data_loader, criterion, criterion_fn, autoq_test_fn, test_data_loader, config.device) ################## # Prepare model ################## resuming_checkpoint_path = config.resuming_checkpoint_path resuming_model_sd = None if resuming_checkpoint_path is not None: resuming_model_sd, resuming_checkpoint = load_resuming_model_state_dict_and_checkpoint_from_path( resuming_checkpoint_path) compression_ctrl, net = create_model(config, resuming_model_sd) if config.distributed: config.batch_size //= config.ngpus_per_node config.workers //= config.ngpus_per_node compression_ctrl.distributed() ########################### # Optimizer ########################### params_to_optimize = get_parameter_groups(net, config) optimizer, lr_scheduler = make_optimizer(params_to_optimize, config) ################################# # Load additional checkpoint data ################################# if resuming_checkpoint_path is not None and config.mode.lower( ) == 'train' and config.to_onnx is None: compression_ctrl.scheduler.load_state_dict( resuming_checkpoint['scheduler']) optimizer.load_state_dict( resuming_checkpoint.get('optimizer', optimizer.state_dict())) config.start_iter = resuming_checkpoint.get('iter', 0) + 1 log_common_mlflow_params(config) if config.to_onnx: compression_ctrl.export_model(config.to_onnx) logger.info("Saved to {}".format(config.to_onnx)) return if is_main_process(): print_statistics(compression_ctrl.statistics()) if config.mode.lower() == 'test': with torch.no_grad(): net.eval() if config['ssd_params'].get('loss_inference', False): model_loss = test_net(net, config.device, test_data_loader, distributed=config.distributed, loss_inference=True, criterion=criterion) logger.info("Final model loss: {:.3f}".format(model_loss)) else: mAp = test_net(net, config.device, test_data_loader, distributed=config.distributed) if config.metrics_dump is not None: write_metrics(mAp, config.metrics_dump) return train(net, compression_ctrl, train_data_loader, test_data_loader, criterion, optimizer, config, lr_scheduler)