def testKernelRegressionGram(self): n, d = 100, 20 xs = self.rng.normal(size=(n, d)) kernel = lambda x, y: jnp.dot(x, y) np.testing.assert_allclose(kernel_lsq.gram(kernel, xs), jnp.dot(xs, xs.T), atol=1E-5)
def testKernelRegressionGram(self): n, d = 100, 20 rng = onp.random.RandomState(0) truth = rng.randn(d) xs = rng.randn(n, d) ys = np.dot(xs, truth) kernel = lambda x, y: np.dot(x, y) assert np.all(kernel_lsq.gram(kernel, xs) == np.dot(xs, xs.T))
def testKernelRegressionGram(self): n, d = 100, 20 rng = np.random.RandomState(0) xs = rng.randn(n, d) kernel = lambda x, y: jnp.dot(x, y) self.assertAllClose(kernel_lsq.gram(kernel, xs), jnp.dot(xs, xs.T), check_dtypes=False)