示例#1
0
def get_grasp_pose(translation, direction, angle, reverse, offset=1e-3):
    #direction = Pose(euler=Euler(roll=np.pi / 2, pitch=direction))
    return multiply(Pose(point=Point(z=offset)),
                    Pose(euler=Euler(yaw=angle)),
                    direction,
                    Pose(point=Point(z=translation)),
                    Pose(euler=Euler(roll=(1-reverse) * np.pi)))
示例#2
0
def test_grasps(robot, node_points, elements):
    element = elements[-1]
    [element_body] = create_elements(node_points, [element])

    phi = 0
    link = link_from_name(robot, TOOL_NAME)
    link_pose = get_link_pose(robot, link)
    draw_pose(link_pose)  #, parent=robot, parent_link=link)
    wait_for_interrupt()

    n1, n2 = element
    p1 = node_points[n1]
    p2 = node_points[n2]
    length = np.linalg.norm(p2 - p1)
    # Bottom of cylinder is p1, top is p2
    print(element, p1, p2)
    for phi in np.linspace(0, np.pi, 10, endpoint=True):
        theta = np.pi / 4
        for t in np.linspace(-length / 2, length / 2, 10):
            translation = Pose(
                point=Point(z=-t)
            )  # Want to be moving backwards because +z is out end effector
            direction = Pose(euler=Euler(roll=np.pi / 2 + theta, pitch=phi))
            angle = Pose(euler=Euler(yaw=1.2))
            grasp_pose = multiply(angle, direction, translation)
            element_pose = multiply(link_pose, grasp_pose)
            set_pose(element_body, element_pose)
            wait_for_interrupt()
示例#3
0
def create_elements(node_points, elements, radius=0.0005, color=(1, 0, 0, 1)):
    # TODO: just shrink the structure to prevent worrying about collisions at end-points
    #radius = 0.0001
    #radius = 0.00005
    #radius = 0.000001
    radius = 1e-6
    # TODO: seems to be a min radius

    shrink = 0.01
    #shrink = 0.
    element_bodies = []
    for (n1, n2) in elements:
        p1, p2 = node_points[n1], node_points[n2]
        height = max(np.linalg.norm(p2 - p1) - 2*shrink, 0)
        #if height == 0: # Cannot keep this here
        #    continue
        center = (p1 + p2) / 2
        # extents = (p2 - p1) / 2
        body = create_cylinder(radius, height, color=color)
        set_point(body, center)
        element_bodies.append(body)

        delta = p2 - p1
        x, y, z = delta
        phi = np.math.atan2(y, x)
        theta = np.math.acos(z / np.linalg.norm(delta))
        set_quat(body, quat_from_euler(Euler(pitch=theta, yaw=phi)))
        # p1 is z=-height/2, p2 is z=+height/2
    return element_bodies
示例#4
0
def test_print(robot, node_points, elements):
    #elements = [elements[0]]
    elements = [elements[-1]]
    [element_body] = create_elements(node_points, elements)
    wait_for_interrupt()

    phi = 0
    #grasp_rotations = [Pose(euler=Euler(roll=np.pi/2, pitch=phi, yaw=theta))
    #               for theta in np.linspace(0, 2*np.pi, 10, endpoint=False)]
    #grasp_rotations = [Pose(euler=Euler(roll=np.pi/2, pitch=theta, yaw=phi))
    #               for theta in np.linspace(0, 2*np.pi, 10, endpoint=False)]
    grasp_rotations = [sample_direction() for _ in range(25)]

    link = link_from_name(robot, TOOL_NAME)
    movable_joints = get_movable_joints(robot)
    sample_fn = get_sample_fn(robot, movable_joints)
    for grasp_rotation in grasp_rotations:
        n1, n2 = elements[0]
        length = np.linalg.norm(node_points[n2] - node_points[n1])
        set_joint_positions(robot, movable_joints, sample_fn())
        for t in np.linspace(-length / 2, length / 2, 10):
            #element_translation = Pose(point=Point(z=-t))
            #grasp_pose = multiply(grasp_rotation, element_translation)
            #reverse = Pose(euler=Euler())
            reverse = Pose(euler=Euler(roll=np.pi))
            grasp_pose = get_grasp_pose(t, grasp_rotation, 0)
            grasp_pose = multiply(grasp_pose, reverse)

            element_pose = get_pose(element_body)
            link_pose = multiply(element_pose, invert(grasp_pose))
            conf = inverse_kinematics(robot, link, link_pose)
            wait_for_interrupt()
示例#5
0
    def gen(robot, body):
        link = link_from_name(robot, BASE_LINK)
        with BodySaver(robot):
            set_base_conf(robot, np.zeros(3))
            robot_pose = get_link_pose(robot, link)
            robot_aabb = get_turtle_aabb(robot)
            # _, upper = robot_aabb
            # radius = upper[0]
            extent = get_aabb_extent(robot_aabb)
            radius = max(extent[:2]) / 2.
            #draw_aabb(robot_aabb)

        center, (diameter, height) = approximate_as_cylinder(body)
        distance = radius + diameter / 2. + epsilon
        _, _, z = get_point(body)  # Assuming already placed stably

        for [scale] in unit_generator(d=1, use_halton=use_halton):
            #theta = PI # 0 | PI
            theta = random.uniform(*theta_interval)
            position = np.append(distance * unit_from_theta(theta=theta),
                                 [z])  # TODO: halton

            yaw = scale * 2 * PI - PI
            quat = quat_from_euler(Euler(yaw=yaw))
            body_pose = (position, quat)
            robot_from_body = multiply(invert(robot_pose), body_pose)
            grasp = Pose(body, robot_from_body)  # TODO: grasp instead of pose
            if draw:
                world_pose = multiply(get_link_pose(robot, link), grasp.value)
                set_pose(body, world_pose)
                handles = draw_pose(get_pose(body), length=1)
                wait_for_user()
                remove_handles(handles)
                #continue
            yield (grasp, )
示例#6
0
def sample_direction():
    ##roll = random.uniform(0, np.pi)
    #roll = np.pi/4
    #pitch = random.uniform(0, 2*np.pi)
    #return Pose(euler=Euler(roll=np.pi / 2 + roll, pitch=pitch))
    roll = random.uniform(-np.pi/2, np.pi/2)
    pitch = random.uniform(-np.pi/2, np.pi/2)
    return Pose(euler=Euler(roll=roll, pitch=pitch))
示例#7
0
 def gen_fn(index):
     brick = brick_from_index[index]
     while True:
         original_grasp = random.choice(brick.grasps)
         theta = random.uniform(-np.pi, +np.pi)
         rotation = Pose(euler=Euler(yaw=theta))
         new_attach = multiply(rotation, original_grasp.attach)
         grasp = Grasp(None, None, None, new_attach, None)
         yield grasp,
示例#8
0
    def gen(robot, body):
        link = link_from_name(robot, BASE_LINK)
        with BodySaver(robot):
            set_base_conf(robot, np.zeros(3))
            robot_pose = get_link_pose(robot, link)
            robot_aabb = get_turtle_aabb(robot)
            #draw_aabb(robot_aabb)
        lower, upper = robot_aabb
        center, (diameter, height) = approximate_as_cylinder(body)
        _, _, z = get_point(body)  # Assuming already placed stably
        position = Point(x=upper[0] + diameter / 2., z=z)

        for [scale] in halton_generator(d=1):
            yaw = scale * 2 * np.pi - np.pi
            quat = quat_from_euler(Euler(yaw=yaw))
            body_pose = (position, quat)
            robot_from_body = multiply(invert(robot_pose), body_pose)
            grasp = Pose(body, robot_from_body)
            yield (grasp, )
示例#9
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1,
                             tool_pose=Pose(euler=Euler(yaw=np.pi / 2)),
                             top_offset=0.02,
                             grasp_length=0.03,
                             under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()