示例#1
0
 def test_execution(self):
     events_queue = queue.Queue(100)
     oe = OrderEvent('BTC_ETC', 'MKT', 1.0, 'BUY')
     e = SimulatedExecutionHandler(events_queue, portfolio=None)
     e.execute_order(oe)
     ee = events_queue.get(False)
     self.assertEqual(ee.type, 'FILL')
     self.assertEqual(ee.direction, 'BUY')
     self.assertEqual(ee.exchange, 'BACKTEST')
     self.assertEqual(ee.quantity, 1.0)
 def setUp(self):
     self.events = queue.Queue()
     self.status = dict()
     self.portfolio = PortfolioLocal(self.status)
     self.execution = SimulatedExecutionHandler(self.status)
     self.manager = Manager(self.status, self.events, self.execution,
                            self.portfolio, None)
     self.event_src = DukascopyCSVPriceHandler("EUR_USD", self.events)
示例#3
0
    def __init__(self, data, strategy, portfolio):
        self.events = events
        self.Feed = data
        self.strategy = strategy
        self.portfolio = portfolio
        self.broker = SimulatedExecutionHandler(commission=None)

        self.cur_holdings = self.portfolio.current_holdings
        self.cur_positions = self.portfolio.current_positions
        self.all_holdings = self.portfolio.all_holdings
        self.all_positions = self.portfolio.all_positions
        self.initial_capital = self.portfolio.initial_capital

        self._activate = {}
        self._activate['print_order'] = False
        self._activate['print_stats'] = False
        self._activate['full_stats'] = False
示例#4
0
文件: main.py 项目: davidlyu/QingYun
    def __init__(self,
                 bars=None,
                 strategy=None,
                 port=None,
                 broker=None,
                 start_date=None,
                 end_date=None):

        if bars is None:
            bars = CoinDataHandler(self, ['okcoinUSD'])

        if strategy is None:
            strategy = BuyAndHoldStrategy(bars, self)

        if port is None:
            port = NaivePortfolio(bars, self, '2017-1-1')

        if broker is None:
            broker = SimulatedExecutionHandler(self)

        self.bars = bars
        self.strategy = strategy
        self.port = port
        self.broker = broker

        self.__event_queue = Queue()
        self.__thread = Thread(target=self.__run)
        self.__active = False
        self.__handlers = {
            'MARKET': [self.__filte_market_event],
            'SIGNAL': [port.update_signal],
            'ORDER': [broker.execute_order],
            'FILL': [port.update_fill]
        }

        if start_date is not None:
            try:
                sd = datetime.datetime.strptime(start_date + " 00:00:00",
                                                "%Y-%m-%d %H:%M:%S")
            except ValueError:
                print(
                    "Parameter start_date can't be parsed by datetime.strptime,"
                    "start_date will equal to None.")
                sd = None

        if end_date is not None:
            try:
                ed = datetime.datetime.strptime(end_date + " 00:00:00",
                                                "%Y-%m-%d %H:%M:%S")
            except ValueError:
                print(
                    "Parameter end_date can't be parsed by datetime.strptime,"
                    "end_date will equal to None.")
                ed = None

        self.__start_date = sd
        self.__end_date = ed
示例#5
0
def test():
	events=Queue()
	csv_dir='/Users/weileizhang/Downloads/'
	symbol_list=['XOM']
	#start_date=datetime.datetime(2013,1,1)
        #end_date=datetime.datetime(2015,1,5)
	#bars=HistoricCSVDataHandler(events,csv_dir,symbol_list,start_date,end_date)
	start_date='2010-1-1'
	end_date='2015-1-1'
	bars=DataBaseDataHandler(events,symbol_list,start_date,end_date)
#	strategy=BuyAndHoldStrategy(bars,events)
	strategy=MovingAverageCrossStrategy(bars,events,short_window=100,long_window=400)
	port=NaivePortfolio(bars,events,start_date,initial_capital=100000.0)
	broker=SimulatedExecutionHandler(events)

	while True:
		if bars.continue_backtest==True:
			bars.update_bars()
		else:
			break

		while True:
			try:
				event=events.get(False)
			except:
				break
			else:
				if event is not None:
					if event.type=='MARKET':
						strategy.calculate_signals(event)
						port.update_timeindex(event)

					elif event.type=='SIGNAL':
						port.update_signal(event)

					elif event.type=='ORDER':
						broker.execute_order(event)

					elif event.type=='FILL':
						port.update_fill(event)
		
	port.create_equity_curve_dataframe()
	stats=port.output_summary_stats()	
	print(stats)
示例#6
0
    def __init__(self, strategy):
        self.events = events
        self.strategy = strategy
        self.Feed = self.strategy.portfolio.bars
        self.portfolio = self.strategy.portfolio
        self.broker = SimulatedExecutionHandler(commission=0)
        self.commission = 0

        self.cur_holdings = self.portfolio.cur_holdings
        self.cur_positions = self.portfolio.cur_posit
        self.all_holdings = self.portfolio.all_holdings
        self.all_positions = self.portfolio.all_positions
        self.initial_capital = self.portfolio.initial_capital
        self.leverage = self.portfolio.leverage

        self._activate = {}
        self._activate['print_order'] = False
        self._activate['print_stats'] = False
        self._activate['full_stats'] = False
示例#7
0
    def test_execution_stop_order(self):
        csv_dir = './tests/datasets/'
        symbol_list = [
            'BTC_ETC',
        ]
        events_queue = queue.Queue(100)
        bars = HistoricCSVDataHandler(events_queue, csv_dir, symbol_list,
                                      ['open', 'high', 'low', 'close'])
        p = NaivePortfolio(bars, events_queue, datetime(2017, 4, 1, 0, 0, 0),
                           1000.0)
        e = SimulatedExecutionHandler(events_queue, portfolio=p)

        bars.update_bars()
        oe = OrderEvent('BTC_ETC', 'STP', 300000.0, 'BUY', 0.00259)
        e.execute_order(oe)
        self.assertTrue(len(e.stop_orders) > 0)
        bars.update_bars()
        ee = events_queue.get(False)
        e.check_stop_orders(ee)
        p.update_timeindex(ee)

        p.create_equity_curve_dataframe()
        self.assertEqual(p.equity_curve['equity_curve'][-1],
                         1.0001020000000001)
示例#8
0
# 管理市场信息
market = BackTestMarket(backtestlogger,timemodule,events)
market.initdata()


# 策略模块
imp_module = __import__(StrategyFile)
classname = StrategyName
StrategyFunc = getattr(imp_module, classname)
strategy = StrategyFunc(backtestlogger,market,events)

# 持仓模块
portfolio = NaivePortfolio(backtestlogger,tradelogger,market,events)

# 执行模块
excution = SimulatedExecutionHandler(backtestlogger,events)

while True:
    # Update the bars (specific backtest code, as opposed to live trading)
    market.update()
    if market.cotinue_backtest == False:
        break
    # Handle the events
 
    while True:
        # 获取待处理的事件,如果队列空就结束循环
        if  events.qsize() == 0:
            break
        else:
            event = events.get(False)
        
示例#9
0
import time

from queue import Queue
from data import HistoricPDDataHandler
from strategy import BuyAndHoldStrategy, MeanReversionStrategy
from execution import SimulatedExecutionHandler
from portfolio import NaivePortfolio

events = Queue()

bars = HistoricPDDataHandler(events, "../data", ["fb"])
# strategy = BuyAndHoldStrategy(bars, events)
strategy = MeanReversionStrategy(bars, events, short_window=5)
# def __init__(self, bars, events, start_date, initial_capital=100000.0):
port = NaivePortfolio(bars, events, "2018-10-3", 100000)
broker = SimulatedExecutionHandler(events)

print("Days: 50, Strategy: Mean-Reversion, Stock: FB")
print("Press Enter to Start...")
input()

while bars.continue_backtest == True:

    # print ("Updating Bars.")
    bars.update_bars()

    while True:
        if events.empty():
            break
        else:
            event = events.get(False)
示例#10
0
class OnePiece():
    def __init__(self, strategy):
        self.events = events
        self.strategy = strategy
        self.Feed = self.strategy.portfolio.bars
        self.portfolio = self.strategy.portfolio
        self.broker = SimulatedExecutionHandler(commission=0)
        self.commission = 0

        self.cur_holdings = self.portfolio.cur_holdings
        self.cur_positions = self.portfolio.cur_posit
        self.all_holdings = self.portfolio.all_holdings
        self.all_positions = self.portfolio.all_positions
        self.initial_capital = self.portfolio.initial_capital
        self.leverage = self.portfolio.leverage

        self._activate = {}
        self._activate['print_order'] = False
        self._activate['print_stats'] = False
        self._activate['full_stats'] = False

    def sunny(self):
        while True:
            try:
                event = self.events.get(False)
            except Queue.Empty:
                self.Feed.update_bars()
                self.portfolio._update_timeindex()

            else:
                if event is not None:
                    if event.type == 'Market':
                        self.strategy._context()
                        self.strategy.Execute_list()
                        self.strategy.luffy()

                    if event.type == 'Signal':
                        self.portfolio.update_signal(event)

                    if event.type == 'Order':
                        One_lot_depo = 100000.0 / self.leverage * marginRate[
                            event.symbol] + self.commission

                        if 'EXIT' in event.signal_type:
                            self.broker.execute_order(event)

                        elif (self.all_holdings[-1]['cash'] >
                              event.quantity_l * One_lot_depo
                              and self.all_holdings[-1]['cash'] >
                              event.quantity_s * One_lot_depo):

                            self.broker.execute_order(event)

                            # print order
                            if self._activate['print_order']:
                                event.print_order()
                        else:
                            if self._activate['print_order']:
                                print "Cash is not enough!!!!!!!!!!!!!!!!"
                                event.cancel_order()

                    if event.type == 'Fill':
                        self.portfolio.update_fill(event)

                        if self._activate['print_order']:
                            event.print_executed()

                if self.Feed.continue_backtest == False:
                    print 'Final Portfolio Value: ' + str(
                        self.all_holdings[-1]['total'])

                    if self._activate['print_stats']:
                        self.portfolio.create_equity_curve_df()
                        print self.portfolio.output_summary_stats()

                    if self._activate['full_stats']:
                        self.get_analysis()
                    break

    def print_trade(self):
        self._activate['print_order'] = True

    def print_stats(self, full=False):
        self._activate['print_stats'] = True
        if full:
            self._activate['full_stats'] = True

    def get_equity_curve(self):
        df = self.portfolio.create_equity_curve_df()
        df = df.join(self.get_all_holdings()['total'])
        df.index = pd.DatetimeIndex(df.index)
        df.drop('1993-08-07', inplace=True)
        return df

    def get_analysis(self):
        ori_tlog = self.get_log(True)
        tlog = self.get_log()
        dbal = self.get_equity_curve()
        start = self.get_equity_curve().index[0]
        end = self.get_equity_curve().index[-1]
        capital = self.initial_capital
        print stats(tlog, ori_tlog, dbal, start, end, capital)

    def get_log(self, exit=False):
        # Original log, include exit_order
        ori_tlog = pd.DataFrame(self.portfolio.trade_log)
        ori_tlog.set_index('datetime', inplace=True)
        ori_tlog.index = pd.DatetimeIndex(ori_tlog.index)
        # generate PnL, perfect log
        log, n = generate_perfect_log(
            tlog=ori_tlog, latest_bar_dict=self.Feed.latest_bar_dict)
        df = pd.DataFrame(log)
        df.set_index('datetime', inplace=True)
        df.index = pd.DatetimeIndex(df.index)
        df.sort_index(inplace=True)
        if exit:
            print 'Still_Opening_trades: ' + str(n)
            return ori_tlog[[
                'symbol', 's_type', 'price', 'qty', 'cur_positions', 'cash',
                'total'
            ]]
        else:
            return df[[
                'symbol', 's_type', 'price', 'qty', 'cur_positions',
                'exit_date', 'period', 'cash', 'PnL', 'total'
            ]]

    def set_commission(self, commiss):
        self.broker = SimulatedExecutionHandler(commission=commiss)
        self.commission = commiss

####################### from portfolio ###############################

    def get_cur_holdings(self):
        return pd.DataFrame(self.cur_holdings)

    def get_cur_posit(self):
        return pd.DataFrame(self.cur_positions)

    def get_all_holdings(self):
        df = pd.DataFrame(self.all_holdings)
        df.set_index('datetime', inplace=True)
        df.drop('1993-08-07', inplace=True)
        df.index = pd.DatetimeIndex(df.index)
        return df

    def get_all_positions(self):
        df = pd.DataFrame(self.all_positions)
        df.set_index('datetime', inplace=True)
        df.drop('1993-08-07', inplace=True)
        df.index = pd.DatetimeIndex(df.index)
        return df

    def get_symbol_list(self):
        return self.portfolio.symbol_list

    def get_initial_capital(self):
        return self.initial_capital

    def plot(self, symbol, engine='plotly', notebook=False):
        data = plotter(latest_bar_dict=self.Feed.latest_bar_dict,
                       enquity_curve=self.get_equity_curve(),
                       tlog=self.get_log(),
                       positions=self.get_all_positions(),
                       holdings=self.get_all_holdings())
        data.plot(symbol=symbol, engine=engine, notebook=notebook)

    def plot_log(self, symbol, engine='plotly', notebook=False):
        data = plotter(latest_bar_dict=self.Feed.latest_bar_dict,
                       enquity_curve=self.get_equity_curve(),
                       tlog=self.get_log(),
                       positions=self.get_all_positions(),
                       holdings=self.get_all_holdings())
        data.plot_log(symbol=symbol, engine=engine, notebook=notebook)
示例#11
0
 def set_commission(self, commiss):
     self.broker = SimulatedExecutionHandler(commission=commiss)
     self.commission = commiss
示例#12
0
import time
import queue

from data import HistoricCSVDataHandler
from portfolio import NaivePortfolio
from strategy import BuyAndHoldStrategy, StatArbitrageStrategy
from execution import SimulatedExecutionHandler

events_queue = queue.Queue(100)

broker = SimulatedExecutionHandler(events_queue)
bars = HistoricCSVDataHandler(events_queue, './datasets/', ['BTC_ETC', 'BTC_LTC'], fields=[
    'open',
    'high',
    'low',
    'close',
])
strategy = StatArbitrageStrategy(bars, events_queue)
port = NaivePortfolio(bars, events_queue, None, 1000.0)


def run(heartbeat=3):
    while True:
        # Update the bars (specific backtest code, as opposed to live trading)
        if bars.continue_backtest:
            bars.update_bars()
        else:
            break

        # Handle the events
        while True:
示例#13
0
    portfolio.rpnl.plot()

    plt.grid(True)
    plt.show()


if __name__ == "__main__":
    events = queue.Queue()  # 同期キュー

    status = dict()  # tick をまたいで記憶しておきたい情報
    status["is_sim"] = True

    portfolio = PortfolioLocal(status)

    execution = SimulatedExecutionHandler(status)

    timeseries = TimeSeries(status)

    strategy = OLSTIME(status)    
#    strategy = SMAKNN(status)
#    strategy = MARTINRSI(status)
#    strategy = SMABOLPIPRSI(status)
#    strategy = SMABOLPIP(status)    
#    strategy = SMAPIP(status)
#    strategy = SMAPIPRSI(status)
#    strategy = SMAOLSPIP(status)
#    strategy = SMABOL(status)
#    strategy = SMARSIOLS(status)
#    strategy = WMA(status)
#    strategy = SMAOLS(status)
示例#14
0
def simulate():
    events = queue.Queue()

    ##Set this directory as the one where you will store the .csv files by ticker symbol ex. FB.csv etc it will be named from root
    ##so a directory in your home folder might be /home/data where /data is the folder with the files

    directory = '/twoterradata'
    ab_path = os.path.abspath(directory)
    ##Below symbol list for stocks
    ##Could be modified for Futures
    symbol_list = ['FB', 'AAPL', 'GOOG']

    ##list of thresholds to be set initially for each stock/futures symbols and passed in to the strategy class
    ##May need to think through whether these can work better with Order types of LMT, Trailing Orders etc for better execution
    # g_sell_gain_thresh = 0
    # g_sell_loss_thresh = 0
    # g_buy_thresh = 0
    # g_buy_again_thresh = 0
    # g_incr is the
    global_thresholds = {
        'g_sell_gain_thresh': 0,
        'g_sell_loss_thresh': 0,
        'g_buy_thresh': 0,
        'g_buy_again_thresh': 0,
        'g_incr': 0
    }

    for s in symbol_list:
        global_symbol_thresholds[s] = global_thresholds

    ##Futures_list --would have to update code or use the current symbol_list variable modified for Futures

    ##Define these global thresholds for each value in the symbol

    ##Ensures person executes this tester on a Linux or Mac or uses a VM
    if platform.system() not in ['Linux', 'Darwin']:
        print "Program must run on Linux/Unix system or on Virtual Machine running such a system, please run again"
        quit()

    ##ensure you are logged into session at quandl or set the api key, but for WIKI dataset not necessary
    ##Below URL will be modifed to obtain futures dataset and most likely will be modified with database queries
    quandl_url = "\'https://www.quandl.com/api/v3/datasets/WIKI/"
    for s in symbol_list:
        if os.path.exists(ab_path + '/' + s + '.csv'):
            days_modified = (calendar.timegm(time.gmtime()) -
                             os.path.getmtime(ab_path + '/' + s + '.csv'))
            if days_modified > 86400:
                cmd = "curl " + quandl_url + s + "/data.csv\'" + "> \'" + ab_path + '/' + s + ".csv\'"
                os.system(cmd)
        else:
            cmd = "curl " + quandl_url + s + "/data.csv\'" + "> \'" + ab_path + '/' + s + ".csv\'"
            os.system(cmd)

    print global_symbol_thresholds

    bars = HistoricCSVDataHandler(events, ab_path + '/', symbol_list)
    ##strategy = BuyAndHoldStrategy(bars, events)
    ##strategy for simple trends, this variable must be set as a list to test multiple strategies etc.

    ## Set strategy by modifying here
    strategy = SimpleTrendsStrategy(bars, events)
    port = NaivePortfolio(bars, events, "2015-11-18")
    broker = SimulatedExecutionHandler(events)

    while True:
        # Update the bars (specific backtest code, as opposed to live trading)
        if bars.continue_backtest == True:
            bars.update_bars()
        else:
            break

        # Handle the events
        while True:
            try:
                event = events.get(False)
            except queue.Empty:
                break
            else:
                if event is not None:
                    if event.type == 'MARKET':
                        strategy.calculate_signals(event)
                        port.update_timeindex(event)
                    elif event.type == 'SIGNAL':
                        port.update_signal(event)
                    elif event.type == 'ORDER':
                        #event.print_order()
                        broker.execute_order(event)
                    elif event.type == 'FILL':
                        port.update_fill(event)

    print port.output_summary_stats()
    print port.all_holdings[-1]
示例#15
0
os.chdir("/home/taylor/backtester/")

import Queue
import time

from data import HistoricCSVDataHandler
from strategy import BuyAndHoldStrategy
from portfolio import NaivePortfolio 
from execution import SimulatedExecutionHandler

start_date = '2015-03-13' #figure out better solution for this
events = Queue.Queue(maxsize=100)
bars = HistoricCSVDataHandler(events, "/home/taylor/backtester/csv/", ['yhoo'])
strategy = BuyAndHoldStrategy(bars, events)
port = NaivePortfolio(bars, events, start_date, initial_capital=100000.)
broker = SimulatedExecutionHandler(events)

while True:
    # Update the bars (specific backtest code, as opposed to live trading)
    if bars.continue_backtest == True:
        bars.update_bars()
    else:
        break
    
    # Handle the events
    while True:
        try:
            event = events.get(False)
        except Queue.Empty:
            break
        else:
示例#16
0
import event
import Queue
from datasource import HistoricTDXDataHandler
from execution import SimulatedExecutionHandler
from Tradingstrategy import BollLineMinutesStrategy
import portfolio

events = Queue.Queue()
# first with a signal stock to go through testing
symbol_list = ["300024", "002594", "002415"]
datadir = "D:\\tools\\new_tdx\\vipdoc\\sz\\minline"
bars = HistoricTDXDataHandler(events, datadir, symbol_list)
bars.load_bars(480)  # load trading datum of two days minutes
strategy = BollLineMinutesStrategy(bars, events)
port = portfolio.TrendPortfolio(bars, events, "2015-02-06")
broker = SimulatedExecutionHandler(
    events)  # reinforce the Order execution,polish
# when deal with the real time transactions

while True:
    # Update the bars (specific backtest code, as opposed to live trading)
    if bars.continue_backtest == True:
        bars.update_bars()
    else:
        break

    # Handle the events
    while True:
        try:
            event = events.get(False)
        except Queue.Empty:
            break