import torch from hatemtl.features.preprocessing import preprocess as pp import torch def model_exists(mname): if not os.path.exists("models"): os.mkdir("models") return os.path.exists(os.path.join("models", "{0}.model".format(mname))) if __name__ == "__main__": SimpleRandom.set_seeds() mname = "expt4" + ("emb" if is_embedding_model() else "") + ("large" if is_large_model() else "") sexism_file_tr = os.path.join("data", "waseem_s.tr.json") racism_file_tr = os.path.join("data", "waseem_r.tr.json") neither_file_tr = os.path.join("data", "waseem_n.tr.json") waseem_hovy_tr = os.path.join("data", "amateur_expert.tr.json") sexism_file_dv = os.path.join("data", "waseem_s.dv.json") racism_file_dv = os.path.join("data", "waseem_r.dv.json") neither_file_dv = os.path.join("data", "waseem_n.dv.json") waseem_hovy_dv = os.path.join("data", "amateur_expert.dv.json") csvreader = CSVReader(encoding="ISO-8859-1") jlr = JSONLineReader() formatter = TextAnnotationFormatter(WaseemLabelSchema(), preprocessing=pp) formatter2 = TextAnnotationFormatter(WaseemHovyLabelSchema(),
from torch import nn, autograd import torch from hatemtl.features.preprocessing import preprocess as pp def model_exists(mname): if not os.path.exists("models"): os.mkdir("models") return os.path.exists(os.path.join("models","{0}.model".format(mname))) if __name__ == "__main__": SimpleRandom.set_seeds() mname = "expt6" + ("emb" if is_embedding_model() else "") + ("large" if is_large_model() else "") sexism_file_tr = os.path.join("data","waseem_s.tr.json") racism_file_tr = os.path.join("data","waseem_r.tr.json") neither_file_tr = os.path.join("data","waseem_n.tr.json") waseem_hovy_tr = os.path.join("data","amateur_expert.tr.json") sexism_file_de = os.path.join("data","waseem_s.dv.json") racism_file_de = os.path.join("data","waseem_r.dv.json") neither_file_de = os.path.join("data","waseem_n.dv.json") waseem_hovy_de = os.path.join("data","amateur_expert.dv.json") sexism_file_te = os.path.join("data","waseem_s.te.json") racism_file_te = os.path.join("data","waseem_r.te.json") neither_file_te = os.path.join("data","waseem_n.te.json")