fig = create_figure((2.4, 2)) ax = create_axis_at_location(fig, 0.5, 0.5, 1.5, 1.) ax.plot(np.arange(0, N_states), Is, color=color) ax.set_xlabel('Latent state') ax.set_xlim([0, N_states]) ax.set_ylabel("bits") ax.set_title('Mutual Information') fig.savefig(os.path.join(figdir, 'figure10.pdf')) plt.close(fig) # Load the data dataset = "hipp_2dtrack_a" N, S_train, pos_train, S_test, pos_test, center, radius = \ load_hipp_data(dataname=dataset) # Load results runnum = 2 results_dir = os.path.join("results", dataset, "run%03d" % runnum) results_type = "hdphmm_scale_alpha_obs2.0" results_file = os.path.join(results_dir, results_type + ".pkl.gz") print "Loading ", results_file with gzip.open(results_file, "r") as f: results = cPickle.load(f) # Compute the mutual info # mutual_info_ss_pos(results, pos_train, center, radius) # mutual_info_per_location(smpls, pos_train, center, radius) mutual_info_per_state(results, pos_train, center, radius, figdir=results_dir)
ax.set_yticklabels(np.arange(0,C, step=stepC)) ax.set_title('$\\mathbf{\Lambda}$') plt.figtext(2.5/5, 1.55/5, "F") # Add colorbar for firing rate matrix # cbax = fig.add_subplot(gs[2,-1]) cbax = create_axis_at_location(fig, 4.4, .5, .1, 1.) cbar = Colorbar(cbax, im, ticks=np.arange(0,16.1, step=1), label="spikes/bin") fig.savefig(os.path.join(figdir, 'figure6.pdf')) fig.savefig(os.path.join(figdir, 'figure6.png')) print "Plots can be found at %s*.pdf" % os.path.join(figdir, 'figure6') # Figure 7: Hippocampal inference trajectories dataset = "hipp_2dtrack_a" N, S_train, pos_train, S_test, pos_test, center, radius = \ load_hipp_data(dataname=dataset) # Load results runnum = 1 results_dir = os.path.join("results", dataset, "run%03d" % runnum) results_type = "hdphmm_scale" results_file = os.path.join(results_dir, results_type + ".pkl.gz") with gzip.open(results_file, "r") as f: results = cPickle.load(f) plot_results(results, S_train, figdir=results_dir)