class Reward_PreTraining: def __init__(self): self.experiment_finished = False self._trials_list = self.generate_trials_list(self._trials, 30) self._iti_list = self.generate_iti_list(30) self._iti_duration = 10 self._intertrial_timer = Timer(self._iti_duration) self._process = SimpleProtocolProcess(self._trials) self._chosen_trial = None self._exp_timer = Timer(1800) self._trial_counter = 0 self._print_check = False def check_skeleton(self, frame, skeleton): status, trial = self._process.get_status() if status: result = self._process.get_result() if result is not None: # if trial is finished, takes new ITI. self._iti_duration = next(self._iti_list, False) self._intertrial_timer = Timer(self._iti_duration) elif self.check_triggers( skeleton) and not self._intertrial_timer.check_timer(): # check trial end trigger and starts Timer self._intertrial_timer.start() if not self._print_check: print("Reward was taken. Going into InterTrialTime for " + str(self._iti_duration) + " sec.") self._print_check = True # resets chosen_trial self._chosen_trial = None elif not self._intertrial_timer.check_timer(): # if the timer ran out or was not started yet again self._print_check = False if self._chosen_trial is None: # if the chosen_trial was reset or first time self._chosen_trial = next(self._trials_list, False) if not self._chosen_trial: # if no more trials exist in iter print("Experiment is finished due to max. trial number.") exp_time = self._exp_timer.return_time() print("Experiment took " + str(exp_time) + " sec") self.stop_experiment() self._trial_counter += 1 print("Stimulation: #", str(self._trial_counter)) self._process.set_trial(self._chosen_trial) self.check_end_time() def check_triggers(self, skeleton): """ checks stage dependent trigger dict :param skeleton: bodypart coordinates :return: returns whether all triggers were true """ result_list = [] result = False for trigger in self._triggers.values(): trigger_result, _ = trigger.check_skeleton(skeleton) result_list.append(trigger_result) if all(result_list): result = True return result @property def _trials(self): """this is a dummy version of the more complex experiments to keep the general flow""" trials = {"Pretraining": dict(stimulus_timer=None, count=0)} return trials @property def _triggers(self): """ creates trial start condition triggers depending on the experimental stage" :return: dict of triggers """ triggers = dict(region=RegionTrigger("circle", (648, 38), 30, "nose")) return triggers @staticmethod def generate_trials_list(trials: dict, length: int): trials_list = [] for trial in range(length): trials_list.append(random.choice(list(trials.keys()))) return iter(trials_list) @staticmethod def generate_iti_list(length: int, min: int = 0): iti_list = [] for i in range(length): iti = random.randint(min, 30 + 1) iti_list.append(iti) return iter(iti_list) def check_end_time(self): if not self._exp_timer.check_timer(): # if experimental time ran out, finish experiments print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): if not self.experiment_finished: self._intertrial_timer.start() self._exp_timer.start() self._process.start() def stop_experiment(self): # stopping the experiment self._process.end() self.experiment_finished = True def get_trial(self): return self._chosen_trial def get_info(self): """ returns optional info""" info = None return info
class SecondExperiment: def __init__(self): self.experiment_finished = False self._green_point = GREEN_POINT self._blue_point = BLUE_POINT self._radius = 20.5 self._event = None self._stage = 3 self._count = {trial: 0 for trial in self._trials} self._exp_timer = Timer(600) # For automatic switches between stages: # self._stages = 2 # self._completion_counter = {stage: False for stage in range(1, self._stages+1)} def check_skeleton(self, frame, skeleton): # if not all(self._completion_counter.values()): # if not all stages are completed for trial in self._trials: # check for all trials if condition is met result, response = self._trials[trial]["trigger"]( skeleton=skeleton) if self._event is None: # if there is no current trial as event already if result: # if condition is met set current trial as event self._event = trial self._count[trial] += 1 else: # if there is a current trial set as event if not result and self._event == trial: # if the condition for current trial is not met, reset event self._event = None elif result and self._event != trial: # if condition is met but event is not current trial(but last trial), set current trial as event self._event = trial self._count[trial] += 1 # plot_triggers_response(frame, response) print(self._event) print("green: {}".format(self._count["Greenbar_whiteback"])) print("blue: {}".format(self._count["Bluebar_whiteback"])) if self._event is not None: # if there is a trial set as event, show stimulus print("I am not none!") show_visual_stim_img(type=self._event, name="inside") elif self._event is None: # if there is no trial set as event, show background show_visual_stim_img(name="inside") if all(trials >= EXP_COMPLETION for trials in self._count.values()): # if all trials reached number of repeats of completion criterion, set stage as completed and go higher # self._completion_counter[self._stage] = True # finish the experiment if stage is completed print("Stage " + str(self._stage) + " completed!") self.stop_experiment() self.check_exp_timer() # self._stage += 1 # else: # # finish the experiment if all stages are completed # self.stop_experiment() @property def _trials(self): orientation_angle = 30 orientation_bodyparts = ["neck", "nose"] region_bodyparts = "nose" if self._stage == 1: green_roi = RegionTrigger("circle", self._green_point, self._radius * 2 + 7.5, region_bodyparts) blue_roi = RegionTrigger("circle", self._blue_point, self._radius * 2 + 7.5, region_bodyparts) trials = { "Greenbar_whiteback": dict(trigger=green_roi.check_skeleton, count=0), "Bluebar_whiteback": dict(trigger=blue_roi.check_skeleton, count=0), } elif self._stage == 2: green_roi = RegionTrigger( "circle", self._green_point, self._radius * 2 + 7.5 * 5, region_bodyparts, ) blue_roi = RegionTrigger("circle", self._blue_point, self._radius * 2 + 7.5 * 5, region_bodyparts) green_dir = DirectionTrigger(self._green_point, orientation_angle, orientation_bodyparts, True) blue_dir = DirectionTrigger(self._blue_point, orientation_angle, orientation_bodyparts, True) def res_func(roi, direct, skeleton): res_roi, response_roi = roi.check_skeleton(skeleton) res_dir, response_dir = direct.check_skeleton(skeleton) final_result = all([res_roi, res_dir]) response_roi["plot"].update(response_dir["plot"]) return final_result, response_roi trials = { "Greenbar_whiteback": dict(trigger=partial(res_func, roi=green_roi, direct=green_dir), count=0), "Bluebar_whiteback": dict(trigger=partial(res_func, roi=blue_roi, direct=blue_dir), count=0), } elif self._stage == 3: green_roi = RegionTrigger( "circle", self._green_point, self._radius * 2 + 7.5 * 10, region_bodyparts, ) blue_roi = RegionTrigger( "circle", self._blue_point, self._radius * 2 + 7.5 * 10, region_bodyparts, ) green_dir = DirectionTrigger(self._green_point, orientation_angle, orientation_bodyparts, True) blue_dir = DirectionTrigger(self._blue_point, orientation_angle, orientation_bodyparts, True) def res_func(roi, direct, skeleton): res_roi, response_roi = roi.check_skeleton(skeleton) res_dir, response_dir = direct.check_skeleton(skeleton) final_result = all([res_roi, res_dir]) response_roi["plot"].update(response_dir["plot"]) return final_result, response_roi trials = { "Greenbar_whiteback": dict(trigger=partial(res_func, roi=green_roi, direct=green_dir), count=0), "Bluebar_whiteback": dict(trigger=partial(res_func, roi=blue_roi, direct=blue_dir), count=0), } # green_dir = DirectionTrigger(self._green_point, orientation_angle, orientation_bodyparts, True) # blue_dir = DirectionTrigger(self._blue_point, orientation_angle, orientation_bodyparts, True) # # trials = {'Greenbar_whiteback': dict(trigger=green_dir.check_skeleton, # count=0), # 'Bluebar_whiteback': dict(trigger=blue_dir.check_skeleton, # count=0)} return trials def check_exp_timer(self): if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): # not necessary as this experiment is not needing any multiprocessing if not self.experiment_finished: self._exp_timer.start() def stop_experiment(self): self.experiment_finished = True print("Experiment completed!") def get_trial(self): return self._event def get_info(self): """ returns optional info""" info = None return info
class OptogenExperiment: def __init__(self): self.experiment_finished = False self._point = POINT self._start_angle, self._end_angle = ANGLE_WINDOW self._intertrial_timer = Timer(15) self._experiment_timer = Timer(1800) self._event = False self._event_start = None self._results = [] self._max_trial_time = 5 self._min_trial_time = 1 self._max_total_time = 600 self._total_time = 0 self._trial_time = 0 def check_skeleton(self, frame, skeleton): if self._experiment_timer.check_timer(): if self._total_time >= self._max_total_time: # check if total time to stimulate per experiment is reached print("Ending experiment, total event time ran out") self.stop_experiment() else: # if not continue if not self._intertrial_timer.check_timer(): # check if there is an intertrial time running right now, if not continue # check if the headdirection angle is within limits _, angle_point = angle_between_vectors( *skeleton["neck"], *skeleton["nose"], *self._point) if self._start_angle <= angle_point <= self._end_angle: if not self._event: # if a stimulation event wasn't started already, start one print("Starting Stimulation") self._event = True # and activate the laser, start the timer and reset the intertrial timer laser_switch(True) self._event_start = time.time() self._intertrial_timer.reset() else: if time.time( ) - self._event_start <= self._max_trial_time: # if the total event time has not reached the maximum time per event # self._trial_time = time.time() - self._event_start pass else: # if the maximum event time was reached, reset the event, # turn off the laser and start intertrial time print( "Ending Stimulation, Stimulation time ran out" ) self._event = False # laser_toggle(False) laser_switch(False) # self._trial_time = time.time() - self._event_start trial_time = time.time() - self._event_start self._total_time += trial_time self._results.append(trial_time) print("Stimulation duration", trial_time) self._intertrial_timer.start() else: # if the headdirection is not within the parameters if self._event: # but the stimulation is still going if time.time( ) - self._event_start < self._min_trial_time: # check if the minimum event time was not reached, then pass pass else: # if minumum event time has been reached, reset the event, # turn of the laser and start intertrial time print("Ending Stimulation, angle not in range") self._event = False # laser_toggle(False) laser_switch(False) # self._trial_time = time.time() - self._event_start trial_time = time.time() - self._event_start self._total_time += trial_time self._results.append(trial_time) print("Stimulation duration", trial_time) self._intertrial_timer.start() else: # if maximum experiment time was reached, stop experiment print("Ending experiment, timer ran out") self.stop_experiment() return self._event def start_experiment(self): # not necessary as this experiment is not needing any multiprocessing self._experiment_timer.start() def stop_experiment(self): self.experiment_finished = True print("Experiment completed!") print("Total event duration", sum(self._results)) print(self._results) def get_trial(self): return self._event def get_info(self): """ returns optional info""" info = None return info
class FirstExperiment: def __init__(self): self.experiment_finished = False self._trials_list = self.generate_trials_list(self._trials, EXP_LENGTH) self._result_list = [] self._iti_list = self.generate_iti_list(EXP_LENGTH, min=10) self._iti_duration = INTERTRIAL_TIME self._intertrial_timer = Timer(self._iti_duration) self._penalty_timer = Timer(PENALTY_TIME) self._process = ClassicProtocolProcess(self._trials) self._success_count = {trial: [] for trial in self._trials} self._completion_counter = {trial: False for trial in self._trials} self._event = None self._chosen_trial = None self._print_check = False self._stage = 1 self._exp_timer = Timer(EXP_TIME) def check_skeleton(self, frame, skeleton): status, trial = self._process.get_status() if status: current_trial = self._trials[trial] condition, response = current_trial["trigger"].check_skeleton( skeleton) self._process.pass_condition(condition) result = self._process.get_result() if result is not None: self.process_result(result, trial) self._chosen_trial = None print(self._completion_counter) # check if all trials were successful until completion if all(self._completion_counter.values()): print("Experiment is finished") print("All trials reached required amount of successes") self.stop_experiment() # if not continue self._iti_duration = next(self._iti_list, False) self._intertrial_timer = Timer(self._iti_duration) print(" Going into InterTrialTime for " + str(self._iti_duration) + " sec.") self._intertrial_timer.start() result = None plot_triggers_response(frame, response) # elif not self._intertrial_timer.check_timer() and not self._penalty_timer.check_timer(): elif not self._intertrial_timer.check_timer(): # chosen_trial = random.choice(list(self._experiment['possible_trials'].keys())) if self._chosen_trial is None: self._chosen_trial = next(self._trials_list, False) elif not self._chosen_trial: print("Experiment is finished due to max. trial number.") print(self._result_list) self.stop_experiment() elif self._counter["result"][("Greenbar_whiteback", True)] >= 20: print("Reached max amount of CS+ trial successes!") print(self._result_list) self.stop_experiment() else: # if self._counter['trial']['Greenbar_whiteback'] >= 10: # # check if 10 green trials have passed and change trigger stage # self._stage = 2 if self.check_triggers(skeleton): # check trial start triggers self._process.set_trial(self._chosen_trial) self._print_check = False elif not self._print_check: print("Next trial: #" + str(len(self._result_list) + 1) + " " + self._chosen_trial) print( "Animal is not meeting trial start criteria, the start of trial is delayed." ) self._print_check = True # self._penalty_timer.reset() # self._penalty_timer.start() # if experimental time ran out, finish experiments self.check_exp_timer() def process_result(self, result, trial): """ Will add result if TRUE or reset comp_counter if FALSE :param result: bool if trial was successful :param trial: str name of the trial :return: """ self._result_list.append((trial, result)) if result is True: if (trial == "Bluebar_whiteback" and self._completion_counter["Greenbar_whiteback"] is False): self._success_count[trial] = [] print("Success ignored. Waiting for Green.") else: self._success_count[trial].append(result) self.check_completion() print("Trial successful") print("Successful trials in a row so far:" + str(len(self._success_count[trial]))) else: self._success_count[trial] = [] print("Trial failed, resetting completion criterion") trial_counter = self._counter["trial"] result_counter = self._counter["result"] print(trial_counter) print(result_counter) def check_completion(self): """ Check the stored successes count for required amount of successes in a row """ pass # for trial in self._trials: # if len(self._success_count[trial]) >= EXP_COMPLETION: # if trial == 'Bluebar_whiteback' and self._completion_counter['Greenbar_whiteback'] is True: # self._completion_counter[trial] = True # elif trial == 'Greenbar_whiteback': # self._completion_counter[trial] = True def check_triggers(self, skeleton): """ checks stage dependent trigger dict :param skeleton: bodypart coordinates :return: returns whether all triggers were true """ result_list = [] result = False for trigger in self._triggers.values(): trigger_result, _ = trigger.check_skeleton(skeleton) result_list.append(trigger_result) if all(result_list): result = True return result @staticmethod def generate_trials_list(trials: dict, length: int): trials_list = [] for trial in range(length): trials_list.append(random.choice(list(trials.keys()))) return iter(trials_list) @staticmethod def generate_iti_list(length: int, min: int = 0): iti_list = [] for i in range(length): iti = random.randint(min, INTERTRIAL_TIME + 1) iti_list.append(iti) return iter(iti_list) @property def _trials(self): # self.triggers['orient'] = ScreenTrigger('North', 90, ['neck', 'nose']) region_trigger = RegionTrigger("circle", (650, 37), 50, "nose") outside_trigger = OutsideTrigger("circle", (650, 37), 50, "nose") if not CTRL: trials = { "Greenbar_whiteback": dict( stimulus_timer=Timer(10), collection_timer=Timer(10), success_timer=Timer(7), trigger=region_trigger, result_func=any, random_reward=False, ), "Bluebar_whiteback": dict( stimulus_timer=Timer(10), collection_timer=Timer(10), success_timer=Timer(7), trigger=outside_trigger, result_func=all, random_reward=False, ), } else: trials = { "CTRL": dict( stimulus_timer=Timer(10), collection_timer=Timer(7), success_timer=Timer(10), trigger=region_trigger, result_func=any, random_reward=False, ) } return trials @property def _triggers(self): """ creates trial start condition triggers depending on the experimental stage" :return: dict of triggers """ if self._stage == 1: triggers = dict( orient=ScreenTrigger("North", 90, ["neck", "nose"])) # if self._stage == 2: # triggers = dict(orient = ScreenTrigger('North', 90, ['neck', 'nose']), # region = OutsideTrigger('circle', (650, 50), 50, 'nose')) return triggers @property def _counter(self): """ counts instances of each past trial as saved in result_list dict :return: dictionary of all trial types (key) and number of past occurences (value) """ trial_list = [i[0] for i in self._result_list] trial_counter = Counter(trial_list) res_counter = Counter(self._result_list) return {"trial": trial_counter, "result": res_counter} def check_exp_timer(self): if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): if not self.experiment_finished: self._exp_timer.start() self._intertrial_timer.start() self._process.start() def stop_experiment(self): # stopping the experiment self._process.end() self.experiment_finished = True def get_trial(self): return self._chosen_trial def get_info(self): """ returns optional info""" info = None return info
class SpeedExperiment: """ Simple class to contain all of the experiment properties Uses multiprocess to ensure the best possible performance and to showcase that it is possible to work with any type of equipment, even timer-dependent """ def __init__(self): self.experiment_finished = False self._threshold = 10 self._event = None self._current_trial = None self._event_count = 0 self._trigger = SpeedTrigger(threshold=self._threshold, bodypart="tailroot", timewindow_len=5) self._exp_timer = Timer(600) def check_skeleton(self, frame, skeleton): """ Checking each passed animal skeleton for a pre-defined set of conditions Outputting the visual representation, if exist Advancing trials according to inherent logic of an experiment :param frame: frame, on which animal skeleton was found :param skeleton: skeleton, consisting of multiple joints of an animal """ self.check_exp_timer() # checking if experiment is still on if not self.experiment_finished: result, response = self._trigger.check_skeleton(skeleton=skeleton) plot_triggers_response(frame, response) if result: laser_switch(True) self._event_count += 1 print(self._event_count) print("Light on") else: laser_switch(False) print("Light off") return result, response def check_exp_timer(self): """ Checking the experiment timer """ if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): """ Start the experiment """ if not self.experiment_finished: self._exp_timer.start() def stop_experiment(self): """ Stop the experiment and reset the timer """ self.experiment_finished = True print("Experiment completed!") self._exp_timer.reset() # don't forget to stop the laser for safety! laser_switch(False) def get_trial(self): """ Check which trial is going on right now """ return self._current_trial
class ExampleSocialInteractionExperiment: """ In this experiment the skeleton/instance of each animal will be considers for the trigger, any animal can trigger the stimulation (the first one to result in TRUE). Simple class to contain all of the experiment properties Uses multiprocess to ensure the best possible performance and to showcase that it is possible to work with any type of equipment, even timer-dependent """ def __init__(self): self.experiment_finished = False self._process = ExampleProtocolProcess() self._proximity_threshold = 30 self._min_animals = 2 self._event = None self._current_trial = None self._max_reps = 999 self._trial_count = {trial: 0 for trial in self._trials} self._trial_timers = {trial: Timer(10) for trial in self._trials} self._exp_timer = Timer(600) def check_skeleton(self, frame, skeletons): """ Checking passed animal skeletons for a pre-defined set of conditions Outputting the visual representation, if exist Advancing trials according to inherent logic of an experiment :param frame: frame, on which animal skeleton was found :param skeletons: skeletons, consisting of multiple joints of an animal """ self.check_exp_timer() # checking if experiment is still on for trial in self._trial_count: # checking if any trial hit a predefined cap if self._trial_count[trial] >= self._max_reps: self.stop_experiment() if not self.experiment_finished: result, response = False, None # checking if enough animals were detected if len(skeletons) >= self._min_animals: for trial in self._trials: # check if social interaction trigger is true result, response = self._trials[trial]["trigger"]( skeletons=skeletons) plot_triggers_response(frame, response) if result: if self._current_trial is None: if not self._trial_timers[trial].check_timer(): self._current_trial = trial self._trial_timers[trial].reset() self._trial_count[trial] += 1 print(trial, self._trial_count[trial]) else: if self._current_trial == trial: self._current_trial = None self._trial_timers[trial].start() self._process.set_trial(self._current_trial) else: pass return result, response @property def _trials(self): """ Defining the trials """ identification_dict = dict(active={ "animal": 1, "bp": ["bp0"] }, passive={ "animal": 0, "bp": ["bp2"] }) interaction_trigger = SocialInteractionTrigger( threshold=self._proximity_threshold, identification_dict=identification_dict, interaction_type="proximity", debug=True, ) trials = { "DLStream_test": dict(trigger=interaction_trigger.check_skeleton, count=0) } return trials def check_exp_timer(self): """ Checking the experiment timer """ if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): """ Start the experiment """ self._process.start() if not self.experiment_finished: self._exp_timer.start() def stop_experiment(self): """ Stop the experiment and reset the timer """ self.experiment_finished = True print("Experiment completed!") self._exp_timer.reset() # don't forget to end the process! self._process.end() def get_trial(self): """ Check which trial is going on right now """ return self._current_trial
class ExampleExperiment: """ Simple class to contain all of the experiment properties Uses multiprocess to ensure the best possible performance and to showcase that it is possible to work with any type of equipment, even timer-dependent """ def __init__(self): self.experiment_finished = False self._process = ExampleProtocolProcess() self._green_point = (550, 163) self._blue_point = (372, 163) self._radius = 40 self._event = None self._current_trial = None self._trial_count = {trial: 0 for trial in self._trials} self._trial_timers = {trial: Timer(10) for trial in self._trials} self._exp_timer = Timer(600) def check_skeleton(self, frame, skeleton): """ Checking each passed animal skeleton for a pre-defined set of conditions Outputting the visual representation, if exist Advancing trials according to inherent logic of an experiment :param frame: frame, on which animal skeleton was found :param skeleton: skeleton, consisting of multiple joints of an animal """ self.check_exp_timer() # checking if experiment is still on for trial in self._trial_count: # checking if any trial hit a predefined cap if self._trial_count[trial] >= 10: self.stop_experiment() if not self.experiment_finished: result, response = False, None for trial in self._trials: # check for all trials if condition is met result, response = self._trials[trial]["trigger"]( skeleton=skeleton) plot_triggers_response(frame, response) if result: if self._current_trial is None: if not self._trial_timers[trial].check_timer(): self._current_trial = trial self._trial_timers[trial].reset() self._trial_count[trial] += 1 print(trial, self._trial_count[trial]) else: if self._current_trial == trial: self._current_trial = None self._trial_timers[trial].start() self._process.set_trial(self._current_trial) return result, response @property def _trials(self): """ Defining the trials """ green_roi = RegionTrigger("circle", self._green_point, self._radius * 2 + 7.5, "neck") blue_roi = RegionTrigger("circle", self._blue_point, self._radius * 2 + 7.5, "neck") trials = { "Greenbar_whiteback": dict(trigger=green_roi.check_skeleton, count=0), "Bluebar_whiteback": dict(trigger=blue_roi.check_skeleton, count=0), } return trials def check_exp_timer(self): """ Checking the experiment timer """ if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): """ Start the experiment """ self._process.start() if not self.experiment_finished: self._exp_timer.start() def stop_experiment(self): """ Stop the experiment and reset the timer """ self.experiment_finished = True print("Experiment completed!") self._exp_timer.reset() # don't forget to end the process! self._process.end() def get_trial(self): """ Check which trial is going on right now """ return self._current_trial
class ExampleMultipleAnimalExperiment: """ In this experiment the skeleton/instance of each animal will be considers for the trigger, any animal can trigger the stimulation (the first one to result in TRUE). Simple class to contain all of the experiment properties Uses multiprocess to ensure the best possible performance and to showcase that it is possible to work with any type of equipment, even timer-dependent """ def __init__(self): self.experiment_finished = False self._process = ExampleProtocolProcess() self._green_point = (550, 163) self._radius = 40 self._dist_threshold = 80 self._event = None self._current_trial = None self._max_reps = 10 self._trial_count = {trial: 0 for trial in self._trials} self._trial_timers = {trial: Timer(10) for trial in self._trials} self._exp_timer = Timer(600) def check_skeleton(self, frame, skeletons): """ Checking each passed animal skeleton for a pre-defined set of conditions Outputting the visual representation, if exist Advancing trials according to inherent logic of an experiment :param frame: frame, on which animal skeleton was found :param skeletons: skeletons, consisting of multiple joints of an animal """ self.check_exp_timer() # checking if experiment is still on for trial in self._trial_count: # checking if any trial hit a predefined cap if self._trial_count[trial] >= self._max_reps: self.stop_experiment() if not self.experiment_finished: result, response = False, None for trial in self._trials: # check for all trials if condition is met result_list = [] for skeleton in skeletons: # checking each skeleton for trigger success result, response = self._trials[trial]['trigger']( skeleton=skeleton) # if one of the triggers is true, break the loop and continue (the first True) if result: break plot_triggers_response(frame, response) if result: if self._current_trial is None: if not self._trial_timers[trial].check_timer(): self._current_trial = trial self._trial_timers[trial].reset() self._trial_count[trial] += 1 print(trial, self._trial_count[trial]) else: if self._current_trial == trial: self._current_trial = None self._trial_timers[trial].start() self._process.set_trial(self._current_trial) return result, response @property def _trials(self): """ Defining the trials """ green_roi = RegionTrigger('circle', self._green_point, self._radius * 2 + 7.5, 'bp1') trials = { 'Greenbar_whiteback': dict(trigger=green_roi.check_skeleton, count=0) } return trials def check_exp_timer(self): """ Checking the experiment timer """ if not self._exp_timer.check_timer(): print("Experiment is finished") print("Time ran out.") self.stop_experiment() def start_experiment(self): """ Start the experiment """ self._process.start() if not self.experiment_finished: self._exp_timer.start() def stop_experiment(self): """ Stop the experiment and reset the timer """ self.experiment_finished = True print('Experiment completed!') self._exp_timer.reset() # don't forget to end the process! self._process.end() def get_trial(self): """ Check which trial is going on right now """ return self._current_trial