示例#1
0
def init(config):
    model = raimodel.Model.load(config['modelpath'])
    host = config['server'].split(':')[0]
    port = config['server'].split(':')[1]
    init.con = rai.Client(host=host, port=port)
    init.con.modelset('model', rai.Backend.torch, rai.Device.cpu, model)
    image, init.img_class = get_one_image(transpose=(2, 0, 1))
    init.image = rai.BlobTensor.from_numpy(image)
示例#2
0
def init(config):
    channel = grpc.insecure_channel('localhost:8500')
    init.stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    init.request = predict_pb2.PredictRequest()
    init.request.model_spec.name = 'resnet'
    init.request.model_spec.signature_name = 'serving_default'
    image, init.img_class = get_one_image()
    init.image = tf.contrib.util.make_tensor_proto(image)
示例#3
0
def init(config):
    img, init.img_class = get_one_image(transpose=(2, 0, 1))
    imgdata = ImageData()
    # protobuf assumes the shape of the image is (1, 3, height, width)
    # where 1 is the batchsize and 3 is number of channels
    imgdata.image = img.tobytes()
    imgdata.height = img.shape[2]
    imgdata.width = img.shape[3]
    imgdata.dtype = img.dtype.name
    init.image = imgdata
    channel = grpc.insecure_channel('localhost:50051')
    init.stub = PredictorStub(channel)
示例#4
0
def init(config):
    with tf.gfile.GFile(config['modelpath'], "rb") as f:
        restored_graph_def = tf.GraphDef()
        restored_graph_def.ParseFromString(f.read())
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(
            restored_graph_def,
            input_map=None,
            return_elements=None,
            name="")
    init.graph = graph
    init.image, init.img_class = get_one_image()
    init.images_tensor = graph.get_tensor_by_name('images:0')
    init.logits_tensor = graph.get_tensor_by_name('output:0')
示例#5
0
def init(config):
    host = config['server'].split(':')[0]
    port = config['server'].split(':')[1]
    init.con = rai.Client(host=host, port=port)
    graph = raimodel.Model.load(config['modelpath'])
    inputs = ['images']
    outputs = ['output']
    init.con.modelset('graph',
                      rai.Backend.tf,
                      rai.Device.cpu,
                      graph,
                      input=inputs,
                      output=outputs)
    image, init.img_class = get_one_image()
    init.image = rai.BlobTensor.from_numpy(image)
示例#6
0
def init():
    init.img_list, init.img_class = get_one_image(transpose=(2, 0, 1))
    init.img_list = init.img_list.tolist()
示例#7
0
def init():
    init.img_list, init.img_class = get_one_image()
    init.img_list = init.img_list.tolist()
示例#8
0
def init(config):
    init.model = torch.jit.load(config['modelpath'])
    image, init.img_class = get_one_image(transpose=(2, 0, 1))
    init.image = torch.from_numpy(image)