x_test, y_test = timestamped_to_vector(test, vector_col=v, time_start=0, classification_col=c) x_train, y_train = timestamped_to_vector(train, vector_col=v, time_start=0, classification_col=c) # Random search with thresholding rand_params = Configs.get_all() expt = Experiments.Experiment(rand_params, search_algorithm="random", data=(x_train, y_train), folds=10, folder_name="random_search_reults", thresholding=True, threshold=0.5) # parameter configurations A_B_C = Configs.get_A_B_C # Ensemble model ensemble_config = Experiments.Ensemble_configurations( list(A_B_C.values()), x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, folder_name="test_train_results",
classification_col=2) # test test_data = np.loadtxt("data/test.txt", delimiter=",") x_test, y_test = timestamped_to_vector(test_data, timestamp_col=0, time_start=1, classification_col=2) # all data x = np.concatenate((x_train, x_test)) y = np.concatenate((y_train, y_test)) # random search of hyperparameters expt = Experiments.Experiment(Configs.get_all(), folds=10, search_algorithm="random", data=(x_train, y_train), folder_name="random_search", thresholding=True, threshold=0.5) expt.run_experiments(num_experiments=400) # Config A with separate test set params_A = Configs.get_A() params_A["sequence_length"] = list(range(1, 31)) # total real time length expt = Experiments.Experiment(params_A, search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train,