示例#1
0
def exportData(t1, y1, yErr1, t2, y2, yErr2, table1, variable1, table2,
               variable2, lat1, lat2, lon1, lon2, depth1, depth2):
    df = pd.DataFrame()
    df['time_X'] = t1
    df[variable1] = y1
    df[variable1 + '_std_X'] = yErr1
    df['time_Y'] = t2
    df[variable2] = y2
    df[variable2 + '_std_Y'] = yErr2
    df['lat1'] = lat1
    df['lat2'] = lat2
    df['lon1'] = lon1
    df['lon2'] = lon2
    if db.hasField(table1, 'depth') or db.hasField(table2, 'depth'):
        df['depth1'] = depth1
        df['depth2'] = depth2
    # dirPath = 'data/'
    # if not os.path.exists(dirPath):
    #     os.makedirs(dirPath)
    # path = dirPath + 'XY_' + table1 + '_' + variable1 + '_vs_' + table2 + '_' + variable2 + '.csv'
    # df.to_csv(path, index=False)

    export.dump(df, table1, variable1, prefix='Mutual', fmt='.csv')
    export.dump(df, table2, variable2, prefix='Mutual', fmt='.csv')
    return
示例#2
0
def exportData(cruiseTrack, t, y, yErr, table, variable, margin):
    df = cruiseTrack
    df['margin'] = margin
    # dirPath = 'data/'
    # path = dirPath + 'Front.csv'
    # if not os.path.exists(dirPath):
    #     os.makedirs(dirPath)
    # df.to_csv(path, index=False)

    export.dump(df, table, variable, prefix='Front', fmt='.csv')
    return
示例#3
0
def sectionMap(tables, variables, dt1, dt2, lat1, lat2, lon1, lon2, depth1, depth2, fname, exportDataFlag):
    data, lats, lons, subs, frameVars, units = [], [], [], [], [], []
    xs, ys, zs = [], [], []
    for i in tqdm(range(len(tables)), desc='overall'):
        if not db.hasField(tables[i], 'depth'):
            continue        
        df = subset.section(tables[i], variables[i], dt1, dt2, lat1, lat2, lon1, lon2, depth1, depth2)
        if len(df) < 1:
            com.printTQDM('%d: No matching entry found: Table: %s, Variable: %s ' % (i+1, tables[i], variables[i]), err=True )
            continue
        com.printTQDM('%d: %s retrieved (%s).' % (i+1, variables[i], tables[i]), err=False)
        if exportDataFlag:
            export.dump(df, tables[i], variables[i], prefix='Section', fmt='.csv')
        times = df[df.columns[0]].unique() 
        lats = df.lat.unique()
        lons = df.lon.unique()
        depths = df.depth.unique()
        shape = (len(lats), len(lons), len(depths))

        hours =  [None]
        if 'hour' in df.columns:
            hours = df.hour.unique()

        unit = com.getUnit(tables[i], variables[i])

        for t in times:
            for h in hours:
                frame = df[df[df.columns[0]] == t]
                sub = variables[i] + unit + ', ' + df.columns[0] + ': ' + str(t) 
                if h != None:
                    frame = frame[frame['hour'] == h]
                    sub = sub + ', hour: ' + str(h) + 'hr'
                try:    
                    shot = frame[variables[i]].values.reshape(shape)
                except Exception as e:
                    continue    
                data.append(shot)
                
                xs.append(lons)
                ys.append(lats)
                zs.append(depths)

                frameVars.append(variables[i])
                units.append(unit)
                subs.append(sub)

    bokehSec(data=data, subject=subs, fname=fname, ys=ys, xs=xs, zs=zs, units=units, variables=frameVars)
    return
示例#4
0
def exportData(t, y, yErr, table, variable, lat1, lat2, lon1, lon2, extV,
               extVV, extV2, extVV2):
    df = pd.DataFrame()
    df['month'] = t
    df[variable] = y
    df[variable + '_std'] = yErr
    df['lat1'] = lat1
    df['lat2'] = lat2
    df['lon1'] = lon1
    df['lon2'] = lon2
    df[extV] = extVV
    df[extV2] = extVV2
    # dirPath = 'data/'
    # if not os.path.exists(dirPath):
    #     os.makedirs(dirPath)
    # path = dirPath + 'Monthly_' + table + '_' + variable + '.csv'
    # df.to_csv(path, index=False)

    export.dump(df, table, variable, prefix='Monthly', fmt='.csv')
    return
示例#5
0
def exportData(z, y, yErr, table, variable, date1, date2, lat1, lat2, lon1, lon2, fname):
    df = pd.DataFrame()    
    df['depth'] = z
    df[variable] = y
    df[variable+'_std'] = yErr
    if db.isClimatology(table):
        df['month1'] = clim.timeToMonth(date1)  
        df['month2'] = clim.timeToMonth(date2)  
    else:
        df['time1'] = date1
        df['time2'] = date2
    df['lat1'] = lat1
    df['lat2'] = lat2
    df['lon1'] = lon1
    df['lon2'] = lon2
    # dirPath = 'data/'
    # if not os.path.exists(dirPath):
    #     os.makedirs(dirPath)        
    # path = dirPath + fname + '_' + table + '_' + variable + '.csv'
    # df.to_csv(path, index=False)   

    export.dump(df, table, variable, prefix='DepthProfile', fmt='.csv') 
    return
示例#6
0
def regionalMap(tables, variables, dt1, dt2, lat1, lat2, lon1, lon2, depth1,
                depth2, fname, exportDataFlag):
    data, lats, lons, subs, frameTables, frameVars = [], [], [], [], [], []
    for i in tqdm(range(len(tables)), desc='overall'):
        df = subset.spaceTime(tables[i], variables[i], dt1, dt2, lat1, lat2,
                              lon1, lon2, depth1, depth2)
        if len(df) < 1:
            com.printTQDM(
                '%d: No matching entry found: Table: %s, Variable: %s ' %
                (i + 1, tables[i], variables[i]),
                err=True)
            continue
        com.printTQDM('%d: %s retrieved (%s).' %
                      (i + 1, variables[i], tables[i]),
                      err=False)
        if exportDataFlag:
            export.dump(df,
                        tables[i],
                        variables[i],
                        prefix='Regional',
                        fmt='.csv')
        if com.isGrid(tables[i], variables[i]):
            data, lats, lons, subs, frameTables, frameVars = structuredMap(
                df, tables[i], variables[i], data, lats, lons, subs,
                frameTables, frameVars)
        else:
            dashboardPanels(df, tables[i], variables[i])
            # data, lats, lons, subs, frameTables, frameVars = interpolatedMap(df, tables[i], variables[i], data, lats, lons, subs, frameTables, frameVars)

    bokehMap(data=data,
             subject=subs,
             fname=fname,
             lat=lats,
             lon=lons,
             tables=frameTables,
             variables=frameVars)
    return
示例#7
0
def exportData(y, table, variable, startDate, endDate, lat1, lat2, lon1, lon2,
               depth1, depth2):
    df = pd.DataFrame()
    df[variable] = y
    timeField = 'time'
    if db.isClimatology(table) and db.hasField(table, 'month'):
        timeField = 'month'
    df['start_' + timeField] = startDate
    df['end_' + timeField] = endDate
    df['lat1'] = lat1
    df['lat2'] = lat2
    df['lon1'] = lon1
    df['lon2'] = lon2
    if db.hasField(table, 'depth'):
        df['depth1'] = depth1
        df['depth2'] = depth2
    # dirPath = 'data/'
    # if not os.path.exists(dirPath):
    #     os.makedirs(dirPath)
    # path = dirPath + 'Hist_' + table + '_' + variable + '.csv'
    # df.to_csv(path, index=False)

    export.dump(df, table, variable, prefix='Hist', fmt='.csv')
    return