示例#1
0
def comp_stat(line, year, month, outfile):
    """
    compute statistics and print them out
    input:  line    --- command line, year, month, and output file name
                        command line is used by dmcopy to extract a specific location 
                            Example: ACIS_04_2012.fits.gz[1:1024,1:256]
            year    --- year
            month   --- month
            outfile --- output file name
    output: outfile --- stat results in outfile
    """
    cmd = ' dmcopy ' + line + ' temp.fits clobber="yes"'
    expf.run_ascds(cmd)
    #
    #-- to avoid get min from outside of the edge of a CCD
    #
    cmd = ' dmimgthresh infile=temp.fits  outfile=zcut.fits  cut="0:1e10" value=0 clobber=yes'
    expf.run_ascds(cmd)
    #
    #-- find avg, min, max and deviation
    #
    [avg, minv, minp, maxv, maxp, dev] = extract_stat_result('zcut.fits')
    #
    #-- find the one sigma and two sigma count rate:
    #
    [sigma1, sigma2, sigma3] = expf.three_sigma_values('zcut.fits')

    print_stat(avg, minv, minp, maxv, maxp, dev, sigma1, sigma2, sigma3,\
               year, month, outfile)

    mcf.rm_files('temp.fits')
    mcf.rm_files('zcut.fits')
示例#2
0
def section_cum(ifile, erange, syear, smon, chip, s_out):
    """
    create cummulative image of chip specified
    input:  ifile   --- full ACIS image
            erange  --- date of the current image (e.g. 12_2018)
            syear   --- year of the last cummulative image
            smon    --- month of the last cummulative image
            chip    --- ccd (e.g., i2, s3)
            s_out   --- chip rnage (e.g. [264:1285,1416:2435] for i2)
    output: <cum_acis_dir>/ACIS_07_1999_<mm>_<yyyy>_<chip>.fits.gz
            <mon_acis_dir>/ACIS_<mm>_<yyy>_<chip>.fits.gz
    """
    #
    #--- create an image fits file for a given ccd (chip) of this month
    #
    sec = mon_acis_dir + 'ACIS_' + erange + '_' + chip + '.fits'
    cmd = 'dmcopy ' + ifile + s_out + ' ' + sec
    expf.run_ascds(cmd)
    #
    #--- create an cummulative image fits file for the ccd
    #
    last = cum_acis_dir + 'ACIS_07_1999_' + smon + '_' + syear + '_' + chip + '.fits.gz'
    out = cum_acis_dir + 'ACIS_07_1999_' + erange + '_' + chip + '.fits'
    cmd = 'dmimgcalc ' + last + ' ' + sec + ' ' + out + ' add'
    expf.run_ascds(cmd)
    #
    #--- gzip the created files
    #
    cmd = 'gzip -f ' + sec + ' ' + out
    os.system(cmd)
示例#3
0
def find_10th(fits_file):
    """
    find 10th brightest value    
    input: fits_file    --- image fits file name
    output: 10th brightest value
    """
    #
    #-- make histgram
    #
    cmd = ' dmimghist infile=' + fits_file
    cmd = cmd + '  outfile=outfile.fits hist=1::1 strict=yes clobber=yes'
    expf.run_ascds(cmd)

    cmd = ' dmlist infile=outfile.fits outfile=./zout opt=data'
    expf.run_ascds(cmd)

    data = mcf.read_data_file('./zout', remove=1)
    mcf.rm_files('outfile.fits')
    #
    #--- read bin # and its count rate
    #
    hbin = []
    hcnt = []

    for ent in data:
        try:
            atemp = re.split('\s+|\t+', ent)
            if (len(atemp) > 3) and mcf.is_neumeric(atemp[1])  \
                    and mcf.is_neumeric(atemp[2])  and (int(atemp[4]) > 0):
                hbin.append(float(atemp[1]))
                hcnt.append(int(atemp[4]))
        except:
            pass
#
#--- checking 10 th bright position
#
    try:
        j = 0
        for i in range(len(hbin) - 1, 0, -1):
            if j == 9:
                val = i
                break
            else:
                #
                #--- only when the value is larger than 0, record as count
                #
                if hcnt[i] > 0:
                    j += 1

        return hbin[val]
    except:
        return 'I/INDEF'
示例#4
0
def extract_stat_result(ifile):
    """
    extract stat informaiton
    input:  ifile   --- image fits file 
    output: avg     --- mean
            minp    --- min
            maxp    --- max
            devp    --- sigma
    """
    cmd = ' dmstat infile=' + ifile + '  centroid=no >' + zspace
    expf.run_ascds(cmd)

    data = mcf.read_data_file(zspace, remove=1)
    #
    #--- extract mean, dev, min, and max
    #
    for ent in data:
        atemp = re.split('\s+|\t+', ent)

        m1 = re.search('mean', ent)
        m2 = re.search('min', ent)
        m3 = re.search('max', ent)
        m4 = re.search('sigma', ent)

        if m1 is not None:
            avg = atemp[1]

        if m2 is not None:
            minv = atemp[1]
            btemp = re.split('\(', ent)
            ctemp = re.split('\s+|\t+', btemp[1])
            minp = '(' + ctemp[1] + ',' + ctemp[2] + ')'

        if m3 is not None:
            maxv = atemp[1]
            btemp = re.split('\(', ent)
            ctemp = re.split('\s+|\t+', btemp[1])
            maxp = '(' + ctemp[1] + ',' + ctemp[2] + ')'

        if m4 is not None:
            dev = atemp[1]

    return [avg, minv, minp, maxv, maxp, dev]
示例#5
0
def getstat(fits):
    """
    compute stat for fits image
    input:  fits    --- fits file name
    output: mean    --- mean
            std     --- standard deviation
            vmin    --- min
            vmax    --- max
    """
    cmd = 'dmstat ' + fits + ' centroid=no > ' + zspace
    expf.run_ascds(cmd)

    data = mcf.read_data_file(zspace, remove=1)

    for ent in data:
        m1 = re.search('min', ent)
        m2 = re.search('max', ent)
        m3 = re.search('mean', ent)
        m4 = re.search('sigma', ent)

        if m1 is not None:
            atemp = re.split('\s+|\t+', ent)
            vmin = float(atemp[1])
            continue

        if m2 is not None:
            atemp = re.split('\s+|\t+', ent)
            atemp = re.split('\s+|\t+', ent)
            vmax = int(atemp[1])
            continue

        if m3 is not None:
            atemp = re.split('\s+|\t+', ent)
            mean = float(atemp[1])
            continue

        if m4 is not None:
            atemp = re.split('\s+|\t+', ent)
            std = float(atemp[1])
            continue

    return (mean, std, vmin, vmax)
示例#6
0
def acis_create_cumulative(ifile='NA'):
    """
    create four small section images and create cumulatvie images
    input: ifile    --- input file name (e.g. ACIS_05_2012.fits)
    output: <cum_acis_dir>/ACIS_07_1999_<mm>_<yyyy>*.fits.gz
    """
    if ifile == 'NA':
        ifile = raw_input('Input file name (ACIS_<month>_<year>.fits*): ')
        ifile = ifile.strip()
#
#--- find the designated date of the fits file (ifile example: ACIS_12_2018.fits)
#
    atemp = re.split('.fits', ifile)
    btemp = re.split('ACIS_', atemp[0])
    erange = btemp[1]
    ctemp = re.split('_', erange)
    mon = int(ctemp[0])
    year = int(ctemp[1])
    #
    #--- set the date of the last cummulative data files  (a month before current one)
    #
    lmon = mon - 1
    lyear = year
    if lmon < 1:
        lmon = 12
        lyear -= 1

    smon = mcf.add_leading_zero(lmon)
    syear = str(lyear)
    #
    #--- full image
    #
    last = cum_acis_dir + 'ACIS_07_1999_' + smon + '_' + syear + '.fits.gz'
    out = cum_acis_dir + 'ACIS_07_1999_' + erange + '.fits'
    cmd = 'dmimgcalc ' + last + ' ' + ifile + ' ' + out + ' add'
    expf.run_ascds(cmd)

    cmd = 'gzip -f ' + out
    os.system(cmd)
    #
    #--- CCD I2
    #
    section_cum(ifile, erange, syear, smon, 'i2', '[264:1285,1416:2435]')
    #
    #--- CCD I3
    #
    section_cum(ifile, erange, syear, smon, 'i3', '[1310:2331,1416:2435]')
    #
    #--- CCD S2
    #
    section_cum(ifile, erange, syear, smon, 's2', '[80:1098,56:1076]')
    #
    #--- CCD S3
    #
    section_cum(ifile, erange, syear, smon, 's3', '[1122:2141,56:1076]')
    #
    #--- moving this month's full image fits file to an appropriate directory
    #
    mc = re.search('gz', ifile)
    if mc is None:
        cmd = 'gzip -f ' + ifile
        os.system(cmd)

    mc = re.search(mon_acis_dir, ifile)
    if mc is None:
        cmd = 'mv ' + ifile + '* ' + mon_acis_dir + '/.'
        os.system(cmd)
示例#7
0
def comp_stat(ifile, year, month, out):
    """
    compute statistics for the hrc image and print out the result 
    input:  ifile   --- hrc image file, 
            year    --- year
            month   --- month
            out     --- output file name.
    output: out
    """
    if os.path.isfile(ifile):
        #
        #--- to avoid getting min value from the outside of the frame edge of a CCD, set threshold
        #
        try:
            cmd = ' /bin/nice -n15 dmimgthresh infile=' + ifile
            cmd = cmd + ' outfile=zcut.fits  cut="0:1.e10" value=0 clobber=yes'
            expf.run_ascds(cmd)

            cmd = ' dmstat  infile=zcut.fits  centroid=no >' + zspace
            expf.run_ascds(cmd)

            mcf.rm_files('./zcut.fits')

            data = mcf.read_data_file(zspace)
        except:
            data = []

        val = 'NA'
        for ent in data:
            ent.lstrip()
            m = re.search('mean', ent)
            if m is not None:
                atemp = re.split('\s+|\t', ent)
                val = atemp[1]
                break

        if val != 'NA':
            (mean,  dev,  vmin,  vmax , min_pos_x,  min_pos_y,  max_pos_x,  max_pos_y) \
                                            = readStat(zspace)
            (sig1, sig2, sig3) = expf.three_sigma_values(ifile)

        else:
            (mean,  dev,  vmin,  vmax , min_pos_x,  min_pos_y,  max_pos_x,  max_pos_y)  \
                               = ('NA','NA','NA','NA','NA','NA','NA','NA')
            (sig1, sig2, sig3) = ('NA', 'NA', 'NA')

        mcf.rm_files(zspace)
    else:
        (mean,  dev,  vmin,  vmax , min_pos_x,  min_pos_y,  max_pos_x,  max_pos_y)  \
                           = ('NA','NA','NA','NA','NA','NA','NA','NA')
        (sig1, sig2, sig3) = ('NA', 'NA', 'NA')
#
#--- print out the results
#
    if mean == 'NA':
        line = '%d\t%d\t' % (year, month)
        line = line + 'NA\tNA\tNA\tNA\tNA\tNA\tNA\tNA\tNA\n'
    else:
        line = '%d\t%d\t' % (year, month)
        line = line + '%5.6f\t' % (float(mean))
        line = line + '%5.6f\t' % (float(dev))
        line = line + '%5.1f\t' % (float(vmin))
        line = line + '(%d,%d)\t' % (float(min_pos_x), float(min_pos_y))
        line = line + '%5.1f\t' % (float(vmax))
        line = line + '(%d,%d)\t' % (float(max_pos_x), float(max_pos_y))
        line = line + '%5.1f\t' % (float(sig1))
        line = line + '%5.1f\t' % (float(sig2))
        line = line + '%5.1f\n' % (float(sig3))

    if os.path.isfile(out):
        with open(out, 'a') as f:
            f.write(line)
    else:
        with open(out, 'w') as f:
            f.write(line)
示例#8
0
def acis_dose_get_data(startYear='', startMonth='', stopYear='', stopMonth=''):
    """
    extract ACIS evt1 data from a month and create combined image file. 
    input:  startYear   --- year of starting time
            startMonth  --- month of starting time
            stopYear    --- year of stopping time
            stopMonth   --- month of stopping time
    """
    if startYear == '' or startMonth == '' or stopYear == '' or stopMonth == '':

        startYear = raw_input('Start Year: ')
        startYear = int(float(startYear))
        startMonth = raw_input('Start Month: ')
        startMonth = int(float(startMonth))

        stopYear = raw_input('Stop Year: ')
        stopYear = int(float(stopYear))
        stopMonth = raw_input('Stop Month: ')
        stopMonth = int(float(stopMonth))
#
#--- start extracting the data for the year/month period
#
    for year in range(startYear, stopYear + 1):
        #
        #--- create a list of month appropriate for the year
        #
        month_list = expf.make_month_list(year, startYear, stopYear,
                                          startMonth, stopMonth)

        for month in month_list:
            smon = mcf.add_leading_zero(month)
            start = str(year) + '-' + smon + '-01T00:00:00'

            nextMonth = month + 1
            nyear = year
            if nextMonth > 12:
                nextMonth = 1
                nyear += 1
            smon = mcf.add_leading_zero(nextMonth)
            stop = str(nyear) + '-' + smon + '-01T00:00:00'
            #
            #--- using ar5gl, get a list of file names
            #
            line = 'operation=browse\n'
            line = line + 'dataset=flight\n'
            line = line + 'detector=acis\n'
            line = line + 'level=1\n'
            line = line + 'filetype=evt1\n'
            line = line + 'tstart=' + start + '\n'
            line = line + 'tstop=' + stop + '\n'
            line = line + 'go\n'

            fitsList = mcf.run_arc5gl_process(line)
            #
            #--- extract each evt1 file, extract the central part, and combine them into a one file
            #
            for fits in fitsList:
                print("FITS File: " + fits)
                atemp = re.split('\s+', line)
                line = 'operation=retrieve\n'
                line = line + 'dataset=flight\n'
                line = line + 'detector=acis\n'
                line = line + 'level=1\n'
                line = line + 'filetype=evt1\n'
                line = line + 'filename=' + fits + '\n'
                line = line + 'go\n'

                out = mcf.run_arc5gl_process(line)
                #
                #--- check whether the fits file actually extracted and if so, ungip the file
                #
                if len(out) < 1:
                    continue
                cmd = 'gzip -d ' + out[0]
                os.system(cmd)

                line = fits + '[EVENTS][bin tdetx=2800:5200:1, tdety=1650:4150:1][option type=i4]'
                #
                #--- create an image file
                #
                ichk = expf.create_image(line, 'ztemp.fits')
                #
                #--- combined images
                #
                if ichk > 0:
                    expf.combine_image('ztemp.fits', 'total.fits')

                mcf.rm_files(fits)
                mcf.rm_files('ztemp.fits')
#
#--- rename the file
#
            lyear = str(startYear)
            lmon = mcf.add_leading_zero(startMonth)
            outfile = './ACIS_' + lmon + '_' + lyear + '_full.fits'
            cmd = 'mv total.fits ' + outfile
            os.system(cmd)
            #
            #--- trim the extreme values
            #
            upper = find_10th(outfile)
            if mcf.is_neumeric(upper):
                outfile2 = './ACIS_' + lmon + '_' + lyear + '.fits'
                cmd = ' dmimgthresh infile=' + outfile + ' outfile='
                cmd = cmd + outfile2 + ' cut="0:' + str(
                    upper) + '" value=0 clobber=yes'
                expf.run_ascds(cmd)
            else:
                cmd = 'cp -f ' + outfile + ' ' + outfile2
                os.system(cmd)

            cmd = 'gzip ' + outfile
            os.system(cmd)
            #
            #--- move full one to the data dir; keep other in <exc_dir> to be used to create cumlative files
            #
            cmd = 'mv ' + outfile + '* ' + mon_acis_dir + '/.'
            os.system(cmd)
def createCumulative(year, month, detector, arch_dir):
    """
    create cumulative hrc data for a given year and month
    input:  year        --- year
            month       --- month
            detector    --- HRC-I or HRC-S
            arch_dir    --- archieve dir
    output: <cum_dir>/HRC<inst>_08_1999_<mm>_<yyyy>.fits.gz
    """
    #
    #--- find the previous period
    #
    pyear = year
    pmonth = month - 1

    if pmonth < 1:
        pmonth = 12
        pyear -= 1

    syear = str(year)
    smonth = mcf.add_leading_zero(month)

    spyear = str(pyear)
    spmonth = mcf.add_leading_zero(pmonth)

    if detector == 'HRC-I':
        inst = 'HRCI'
    else:
        inst = 'HRCS'

#
#--- set file names
#
    hrc = inst + '_' + smonth + '_' + syear + '.fits.gz'
    chrc = inst + '_08_1999_' + spmonth + '_' + spyear + '.fits.gz'
    chrc2 = inst + '_08_1999_' + smonth + '_' + syear + '.fits'
    #
    #--- if the monthly file exists, reduce the size of the file before combine
    #--- it into a cumulative data
    #
    cdir = arch_dir + '/Month_hrc/'
    ifile = cdir + hrc

    if os.path.isfile(ifile):
        line = arch_dir + '/Month_hrc/' + hrc + '[opt type=i2,null=-99]'
        cmd = ' dmcopy infile="' + line + '"  outfile="./ztemp.fits"  clobber="yes"'
        expf.run_ascds(cmd)

        cmd = ' dmimgcalc infile=' + arch_dir + 'Cumulative_hrc/' + chrc
        cmd = cmd + ' infile2=ztemp.fits outfile =' + chrc2 + ' operation=add clobber=yes'
        expf.run_ascds(cmd)

        mcf.rm_files('./ztemp.fits')

        cmd = 'gzip ' + chrc2
        os.system(cmd)

        cmd = 'mv ' + chrc2 + '.gz ' + arch_dir + 'Cumulative_hrc/.'
        os.system(cmd)
#
#--- if the monthly fie does not exist, just copy the last month's cumulative data
#
    else:
        try:
            #test = arch_dir + 'Cumulative_hrc/' + chrc
            #with open(test, 'r') as f:
            #    xtest = f.read()

            cmd = 'cp ' + arch_dir + 'Cumulative_hrc/' + chrc + ' '
            cmd = cmd + arch_dir + 'Cumulative_hrc/' + chrc2 + '.gz'
            print("I AM HERE CMD: " + str(cmd))
            #os.system(cmd)
        except:
            print("There are no last month cumulative hrc data")
            subject = 'Missing HRC cumulative data'
            content = 'It seems that the cummulative HRC from the last months are missing'
            expf.send_warning_email(subject, content)
            exit(1)