def main():

    files = glob(config.data_path+'/*.wav') # + glob('data/*.mp3') # try ffmpeg -i input.mp3 output.wav

    data, meta = [], []

    for file_id, file in enumerate(files):

        print(f'reading: {file}')

        d, sample_rate = load(file, config.sample_rate)

        data.append(d)

        # synthesis
        # signal_recons = data_to_audio(data)
        # write(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate, signal_recons)
        # signal_recons, sample_rate = load(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate)

    data_min = min([min(d) for d in data])
    data_max = max([max(d) for d in data])
    data = [(d-data_min)/(data_max-data_min) for d in data]

    meta.extend([data_min, data_max])

    pickle_save([data,meta], config.data_path+('.pk' if config.data_path[-3:]!='.pk' else ''))
    print('saved data.')
示例#2
0
def save_model(model, path=None, py_serialize=True):
    if not path: path = config.model_save_path
    if py_serialize:
        model = [type(layer)(*[getattr(layer,field).detach().numpy() for field in layer._fields]) for layer in model]
        meta = [[[e.detach().numpy() for e in ee] for ee in moments],[[e.detach().numpy() for e in ee] for ee in variances]]
    else:
        meta = [moments,variances]
    pickle_save([model,meta],path+'.pk')
示例#3
0
def save_model(model, path=None):
    from warnings import filterwarnings
    filterwarnings("ignore")
    if not path: path = config.model_path
    if path[-3:] != '.pk': path += '.pk'
    if config.use_gpu:
        moments_ = [[e2.detach().cuda() for e2 in e1] for e1 in moments]
        variances_ = [[e2.detach().cuda() for e2 in e1] for e1 in variances]
        meta = [moments_, variances_]
        model = pull_copy_from_gpu(model)
    else:
        meta = [moments, variances]
    configs = [[field, getattr(config, field)] for field in dir(config)
               if field in config.config_to_save]
    pickle_save([model, meta, configs], path)
def main():

    files = glob(config.data_path + '*/*.wav')
    shuffle(files)

    data = []

    for file_id, file in enumerate(files):

        print(f'reading: {file}')

        signal, sample_rate = load(file, config.sample_rate)
        data.append(audio_to_data(signal))

        # signal_recons = data_to_audio(data,1)
        # write(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate, signal_recons)
        # signal_recons, sample_rate = load(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate)

    meta = [max([max(d) for d in data]), min([min(d) for d in data])]
    data = [(d - meta[1]) / (meta[0] - meta[1]) for d in data]

    pickle_save([data, meta], config.data_path + '.pk')
    print('saved data.')
示例#5
0
def main():

    files = glob(config.data_path+'/*.wav') # + glob('data/*.mp3') # try ffmpeg -i input.mp3 output.wav

    converted = []

    for file_id, file in enumerate(files):

        print(f'reading: {file}')
        song_id = [0 if i == file_id else 1 for i in range(len(files))]

        # analysis
        signal, sample_rate = load(file, config.sample_rate)
        data, meta = audio_to_data(signal, song_id)
        converted.append([data,meta])

        # synthesis
        signal_recons = data_to_audio(data,meta)
        write(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate, signal_recons)
        signal_recons, sample_rate = load(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate)

    pickle_save(converted, config.data_path+'.pk')
    print('saved data.')
def save_data(data, path=None):
    if not path: path = config.data_path
    if path[-3:] != '.pk': path += '.pk'
    pickle_save(data, path)
示例#7
0
def save_data():
    pickle_save([
        load(file, config.sample_rate)[0]
        for file in glob(config.data_path + '/*.wav')
    ], config.data_path + '.pk')
示例#8
0
def save_data(data, path=None):
    if not path: path = config.data_path
    pickle_save(data, path + '.pk')
示例#9
0
def main():

    files = glob(
        config.data_path +
        '/*.wav')  # + glob('data/*.mp3') # try ffmpeg -i input.mp3 output.wav

    if not config.frequencies_to_pick:

        # gather initial info from all files

        frequency_strengths = zeros(len(config.frequencies_of_bins))

        for file in files:
            signal = load(file, config.sample_rate)[0]
            spec = abs(
                stft(signal, config.fft_bins, config.fft_hop_len,
                     config.fft_window_len))
            # print('\tmax min initially:', max(spec), min(spec))
            # show(specshow(spec, sr=config.sample_rate, hop_length=config.fft_hop_len))

            frequency_strengths += spec.sum(1) / spec.shape[1]

        max_strength = max(frequency_strengths)
        strength_thr = max_strength / config.frequency_strength_thr

        band_low_hz = 999_999
        band_high_hz = -1

        for frequency, strength in zip(config.frequencies_of_bins,
                                       frequency_strengths):
            if strength >= strength_thr:
                config.frequencies_to_pick.append(frequency)
                if frequency < band_low_hz: band_low_hz = frequency
                if frequency > band_high_hz: band_low_hz = frequency

        # spec = cat([spec[config.frequencies_of_bins.index(i),:] for i in config.frequencies_to_pick], 0)
        # print('\tmax min after bandpass:'******'with bandpass, timestep size: {len(config.frequencies_of_bins)} -> {len(config.frequencies_to_pick)}'
        )
        print(
            f'copy paste this line into frequencies_to_pick @ config: \n{config.frequencies_to_pick}'
        )

    # proceed to separately processing each file

    converted = []

    for file_id, file in enumerate(files):

        print(f'reading: {file}')
        song_id = [0 if i == file_id else 1 for i in range(len(files))]

        # analysis
        signal, sample_rate = load(file, config.sample_rate)
        data, meta = audio_to_data(signal, song_id)
        converted.append([data, meta])

        # synthesis
        signal_recons = data_to_audio(data, meta)
        write(f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate,
              signal_recons)
        signal_recons, sample_rate = load(
            f'{file.split("/")[-1]}_{file_id}.wav', config.sample_rate)

    pickle_save(converted, config.data_path + '.pk')
    print('saved data.')